• Title/Summary/Keyword: Dynamic Frequency Management

Search Result 130, Processing Time 0.021 seconds

Dynamic Power Management using Dynamic Frequency Scaling in Embedded System (임베디드 시스템에서 DFS 기법을 이용한 동적 전력 관리)

  • Kwon, Ki-Hyeon;Kim, Nam-Yong;Byun, Hyung-Gi
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.217-223
    • /
    • 2009
  • In order to decrease the power consumption in Embedded Linux environment based on XScale PXA255, We produce the device driver of DFS(Dynamic Frequency Scaling) technique, design and implement the middleware DFM(Dynamic Frequency Management) to scale the power of embedded target board with porting this device drive, suggest the method to reduce the Embedded system's power consumption.

  • PDF

A Dynamic Frequency Controlling Technique for Power Management in Existing Commercial Microcontrollers

  • Lueangvilai, Attakorn;Robertson, Christina;Martinez, Christopher J.
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • Power continues to be a driving force in central processing units (CPU) design. Most of the advanced breakthroughs in power have been in a realm that is applicable to workstation CPUs. Advanced power management systems will manage temperature, dynamic voltage scaling and dynamic frequency scaling in a CPU. The use of power management systems for microcontrollers and embedded CPUs has been modest, and mostly focuses on very large scale integration (VLSI) level optimizations compared to system level optimizations. In this paper, a dynamic frequency controlling (DFC) technique is introduced, to lay the foundation of a system level power management system for commercial microcontrollers. The DFC technique allows a commercial microcontroller to have minor modifications on both the hardware and software side, to allow the clock frequency to change to save power; results in this study show a 10% savings. By adding an additional layer of software abstraction at the interrupt level, the microcontroller can operate without having knowledge of the current clock frequency, and this can be accomplished without having to use an embedded operating system.

A layer-wise frequency scaling for a neural processing unit

  • Chung, Jaehoon;Kim, HyunMi;Shin, Kyoungseon;Lyuh, Chun-Gi;Cho, Yong Cheol Peter;Han, Jinho;Kwon, Youngsu;Gong, Young-Ho;Chung, Sung Woo
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.849-858
    • /
    • 2022
  • Dynamic voltage frequency scaling (DVFS) has been widely adopted for runtime power management of various processing units. In the case of neural processing units (NPUs), power management of neural network applications is required to adjust the frequency and voltage every layer to consider the power behavior and performance of each layer. Unfortunately, DVFS is inappropriate for layer-wise run-time power management of NPUs due to the long latency of voltage scaling compared with each layer execution time. Because the frequency scaling is fast enough to keep up with each layer, we propose a layerwise dynamic frequency scaling (DFS) technique for an NPU. Our proposed DFS exploits the highest frequency under the power limit of an NPU for each layer. To determine the highest allowable frequency, we build a power model to predict the power consumption of an NPU based on a real measurement on the fabricated NPU. Our evaluation results show that our proposed DFS improves frame per second (FPS) by 33% and saves energy by 14% on average, compared with DVFS.

Effective management method of OVSF code using Dynamic Common Channel at Inter-frequency/inter-system handover in UTRR (비동기 시스템의 Inter-frequency/inter-system handover에서 Dynamic Common Channel을 이용한 효율적인 OVSF(Orthogonal Variable Spreading Factor) code 이용 방안)

  • 이종원;구연상;유인호;예정화
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.13-16
    • /
    • 2000
  • This paper introduces a more effective usage of the limited OVSF cod in compressed mode which is used during inter-frequency/inter-system handover in UTRA(Universal mobile telecommunications system) Terrestrial Radio Access). The usager is to use dynamic common channel which is shared by several users during the compressed mode.

  • PDF

A Prediction-Based Dynamic Thermal Management Technique for Multi-Core Systems (멀티코어시스템에서의 예측 기반 동적 온도 관리 기법)

  • Kim, Won-Jin;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • The power consumption of a high-end microprocessor increases very rapidly. High power consumption will lead to a rapid increase in the chip temperature as well. If the temperature reaches beyond a certain level, chip operation becomes either slow or unreliable. Therefore various approaches for Dynamic Thermal Management (DTM) have been proposed. In this paper, we propose a learning based temperature prediction scheme for a multi-core system. In this approach, from repeatedly executing an application, we learn the thermal patterns of the chip, and we control the temperature in advance through DTM. When the predicted temperature may go beyond a threshold value, we reduce the temperature by decreasing the operation frequencies of the corresponding core. We implement our temperature prediction on an Intel's Quad-Core system which has integrated digital thermal sensors. A Dynamic Frequency System (DFS) technique is implemented to have four frequency steps on a Linux kernel. We carried out experiments using Phoronix Test Suite benchmarks for Linux. The peak temperature has been reduced by on average $5^{\circ}C{\sim}7^{\circ}C$. The overall average temperature reduced from $72^{\circ}C$ to $65^{\circ}C$.

  • PDF

Energy-aware Management in Wireless Body Area Network System

  • Zhang, Xu;Xia, Ying;Luo, Shiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.949-966
    • /
    • 2013
  • Recently, Wireless Body Area Network (WBAN) has promise to revolutionize human daily life. The need for multiple sensors and constant monitoring lead these systems to be energy hungry and expensive with short operating lifetimes. In this paper, we offer a review of existing work of WBAN and focus on energy-aware management in it. We emphasize that nodes computation, wireless communication, topology deployment and energy scavenging are main domains for making a long-lived WBAN. We study the popular power management technique Dynamic Voltage and Frequency Scaling (DVFS) and identify the impact of slack time in Dynamic Power Management (DPM), and finally propose an enhanced dynamic power management method to schedule scaled jobs at slack time with the goal of saving energy and keeping system reliability. Theoretical and experimental evaluations exhibit the effectiveness and efficiency of the proposed method.

Evaluating Power Consumption and Real-time Performance of Android CPU Governors (안드로이드 CPU 거버너의 전력 소비 및 실시간 성능 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2401-2409
    • /
    • 2016
  • Android CPU governors exploit the DVFS (Dynamic Voltage Frequency Scaling) technique. The DVFS is a power management technique where the CPU operating frequency is decreased to allow a corresponding reduction in the CPU supply voltage. The power consumed by a CPU is approximately proportional to the square of the CPU supply voltage. Therefore, lower CPU operating frequency allows the CPU supply voltage to be lowered. This helps to reduce the CPU power consumption. However, lower CPU operating frequency increases a task's execution time. Such an increase in the task's execution time makes the task's response time longer and makes the task's deadline miss occur. This finally leads to degrading the quality of service provided by the task. In this paper, we evaluated the performance of Android CPU governors in terms of the power consumption, tasks's response time and deadline miss ratio.

Dynamic Fractional Frequency Reuse based on an Improved Water-Filling for Network MIMO

  • M.K, Noor Shahida;Nordin, Rosdiadee;Ismail, Mahamod
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2124-2143
    • /
    • 2016
  • In Long Term Evolution-Advanced (LTE-A) systems, Inter-cell Interference (ICI) is a prominent limiting factor that affects the performance of the systems, especially at the cell edges. Based on the literature, Fractional Frequency Reuse (FFR) methods are known as efficient interference management techniques. In this report, the proposed Dynamic Fractional Frequency Reuse (DFFR) technique improved the capacity and cell edge coverage performance by 70% compared to the Fractional Frequency Reuse (FFR) technique. In this study, an improved power allocation method was adopted into the DFFR technique to reach the goal of not only reducing the ICI mitigation at the cell edges, but also improving the overall capacity of the LTE-A systems. Hence, an improved water-filling algorithm was proposed, and its performance was compared with that of other methods that were considered. Through the simulation results and comparisons with other frequency reuse techniques, it was shown that the proposed method significantly improved the performance of the cell edge throughput by 42%, the capacity by 75%, and the coverage by 80%. Based on the analysis and numerical expressions, it was concluded that the proposed DFFR method provides significant performance improvements, especially for cell edge users.

Energy-aware Dynamic Frequency Scaling Algorithm for Polling based Communication Systems (폴링기반 통신 시스템을 위한 에너지 인지적인 동적 주파수 조절 알고리즘)

  • Cho, Mingi;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1405-1411
    • /
    • 2022
  • Power management is still an important issue in embedded environments as hardware advances like high-performance processors. Power management methods such as DVFS control CPU frequencies in an adaptive manner for efficient power management in polling-based I/O programs such as network communication. This paper presents the problems of the existing power management method and proposes a new power management method. Through this, it is possible to reduce electric consumption by increasing the polling cycle in situations where the frequency of data reception is low, and on the contrary, in situations where data reception is frequent, it can operate at the maximum frequency without performance degradation. After implementing this as a code layer on the embedded board and observing it through Atmel's Power Debugger, the proposed method showed a performance improvement of up to 30% in energy consumption compared to the existing power management method.

A Real Time Model of Dynamic Thermal Response for 120kW IGBT Inverter (120kW급 IGBT 인버터의 열 응답 특성 실시간 모델)

  • Im, Seokyeon;Cha, Gangil;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.184-191
    • /
    • 2015
  • As the power electronics system increases the frequency, the power loss and thermal management are paid more attention. This research presents a real time model of dissipation power with junction temperature response for 120kw IGBT inverter which is applied to the thermal management of high power IGBT inverter. Since the computational time is critical for real time simulation, look-up tables of IGBT module characteristic curve are implemented. The power loss from IGBT provides a clue to calculate the temperature of each module of IGBT. In this study, temperature of each layer in IGBT is predicted by lumped capacitance analysis of layers with convective heat transfer. The power loss and temperature of layers in IGBT is then communicated due to mutual dependence. In the dynamic model, PWM pulses are employed to calculation real time IGBT and diode power loss. Under Matlab/Simulink$^{(R)}$ environment, the dynamic model is validated with experiment. Results showed that the dynamic response of power loss is closely coupled with effective thermal management. The convective heat transfer is enough to achieve proper thermal management under guideline temperature.