• Title/Summary/Keyword: Dynamic Explicit Method

Search Result 182, Processing Time 0.023 seconds

Numerical methods for the dynamic analysis of masonry structures

  • Degl'Innocenti, Silvia;Padovani, Cristina;Pasquinelli, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.107-130
    • /
    • 2006
  • The paper deals with the numerical solution of the dynamic problem of masonry structures. Masonry is modelled as a non-linear elastic material with zero tensile strength and infinite compressive strength. Due to the non-linearity of the adopted constitutive equation, the equations of the motion must be integrated directly. In particular, we apply the Newmark or the Hilber-Hughes-Taylor methods implemented in code NOSA to perform the time integration of the system of ordinary differential equations obtained from discretising the structure into finite elements. Moreover, with the aim of evaluating the effectiveness of these two methods, some dynamic problems, whose explicit solutions are known, have been solved numerically. Comparisons between the exact solutions and the corresponding approximate solutions obtained via the Newmark and Hilber-Hughes-Taylor methods show that in the cases under consideration both numerical methods yield satisfactory results.

Modeling Approaches for Dynamic Robust Design Experiment

  • Bae, Suk-Joo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.373-376
    • /
    • 2006
  • In general, there are three kinds of methods in analyzing dynamic robust design experiment: loss model approach, response function approach, and response model approach. In this talk, we review the three modeling approaches in terms of several criteria in comparison. This talk also generalizes the response model approach based on a generalized linear model. We develop a generalized two-step optimization procedure to substantially reduce the process variance by dampening the effect of both explicit and hidden noise variables. The proposed method provides more reliable results through iterative modeling of the residuals from the fitted response model. The method is compared with three existing approaches in practical examples.

  • PDF

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.

Study on Shock Resistance Design of TFT-LCD Module using Explicit Impact Analysis (TFT-LCD 모듈의 충격해석을 통한 내충격설계 연구)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.24-29
    • /
    • 2010
  • TFT-LCD module with thin, small and layered structure makes its shock analysis very difficult and complicated. As TFT-LCD becomes more thinner, it is more difficult to assure its required shock resistance. Recently, the drop/impact simulation using the commercial explicit dynamic analysis software such as LS-DYNA3D is actively applied to assess the shock characteristics of TFT-LCD. In this study, the effects of analysis parameters and design modifications in the drop/impact simulation are carefully studied. the reliability of the present analysis results can be assured through the experimental verification.

Modelling the dynamic response and failure modes of reinforced concrete structures subjected to blast and impact loading

  • Ngo, Tuan;Mendis, Priyan
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.269-282
    • /
    • 2009
  • Responding to the threat of terrorist attacks around the world, numerous studies have been conducted to search for new methods of vulnerability assessment and protective technologies for critical infrastructure under extreme bomb blasts or high velocity impacts. In this paper, a two-dimensional behavioral rate dependent lattice model (RDLM) capable of analyzing reinforced concrete members subjected to blast and impact loading is presented. The model inherently takes into account several major influencing factors: the progressive cracking of concrete in tension, the inelastic response in compression, the yielding of reinforcing steel, and strain rate sensitivity of both concrete and steel. A computer code using the explicit algorithm was developed based on the proposed lattice model. The explicit code along with the proposed numerical model was validated using experimental test results from the Woomera blast trial.

Development of Reservoir Operating Rule Using Explicit Stochastic Dynamic Programming (양해 추계학적 동적계획기법에 의한 저수지 운영률 개발)

  • Go, Seok-Gu;Lee, Gwang-Man;Lee, Han-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 1997
  • Operating rules, the basic principle of reservoir operation, are mostly developed from maximum or minimum, mean inflow series so that those rules cannot be used in practical operating situations to estimate the expected benefits or provide the operating policies for uncertainty conditions. Many operating rules based on the deterministic method that considers all operation variables including inflows as known variables can not reflect to uncertainties of inflow variations. Explicit operating rules can be developed for improving the weakness. In this method, stochastic trend of inflow series, one of the reservoir operation variables, can be directly method, the stochastic technique was applied to develop reservoir operating rule. In this study, stochastic dynamic programming using the concepts was applied to develop optimal operating rule for the Chungju reservoir system. The developed operating rules are regarded as a practical usage because the operating policy is following up the basic concept of Lag-1 Markov except for flood season. This method can provide reservoir operating rule using the previous stage's inflow and the current stage's beginning storage when the current stage's inflow cannot be predicted properly.

  • PDF

Smart space framework providing dynamic embedded intelligent information (사용자 맞춤 동적 지능형 환경을 제공하는 스마트 공간 프레임워크)

  • Jang, SeoYoon;Kang, JiHoon
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.92-99
    • /
    • 2021
  • Smart space is a technology that supports humans by interacting with the surrounding environment. Smart space has a built-in dynamic intelligent environment. This paper proposes a framework that provides user-customized dynamic intelligent environments in smart spaces. In the existing research that provides user-customized intelligent services, users' interests are only explicitly analyzed, and smart spaces are not considered. Implicit interest analysis can suggest a service that may be of interest to users rather than explicit interest analysis, but it requires higher performance than explicit interest analysis. Smart spaces can obtain useful information by interacting with information in the space. The framework proposed in the study uses a proximity-based social network of things to fit into a smart space. In addition, the implicit interest analysis provides intelligent information for smart spaces using the social media information and spatial information objects. In addition, we propose a method to prevent performance degradation while maintaining accuracy in consideration of the characteristics of the smart space.

Dynamic Response of Container Ship Subjected to Bow flare Slamming Loads

  • Choi, Tae-Soon;Islam, MD Shafiqul;Seo, Dae-Won;Kim, Joon-Gyu;Song, Kang-hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.195-203
    • /
    • 2018
  • The wave impact on ships could cause local damage to the ship's hull, which has been a concerning issue during the ship design process. In recent years, local structural damages of ships caused by slamming loads have been reported by accident; therefore, it is necessary to study the local slamming pressure loads and structural response assessment. In the present study, slamming loads around the ship's bow region in the presence of regular wave have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM) in conjunction with the $k-{\Box}$ turbulence model. The dynamic structural response has been calculated using an explicit FE method. By adding the slamming pressure load of each time step to the finite element model, establishing the reasonable boundary conditions, and considering the material strain-rate effects, the dynamic response prediction of the bow flare structure has been achieved. The results and insights of this study will be helpful to design a container ship that is resistant enough to withstand bow flare slamming loads.

Volume Integral Expressions for Numerical Computation of the Dynamic Energy Release Rate (동적(動的)에너지 방출율(放出率)의 수치해석(數値解析)을 위한 체적적분식(體積積分式))

  • Koh, Hyun Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.65-73
    • /
    • 1989
  • Continuum formulations for the expressions of dynamic energy release rates and computational methods for dynamic stress intensity factors are developed for the analysis of dynamic fracture problems subjected to stress wave loading. Explicit volume integral expressions for instantaneous dynamic energy release rates are derived by modeling virtual crack extensions with the dynamic Eulerian-Lagrangian kinematic description. In the finite element applications a finite region around a crack-tip is modeled by using quarter-point singular isoparametric elements, and the volume integrals are evaluated for each crack-tip element during virtual crack extensions while the singularity is maintained. It is shown that the use of the present method is more reliable and accurate for the dynamic fracture analysis than that of other path-independent integral methods when the effects of stress waves are significant.

  • PDF

A STUDY ON INTERNAL FLOW CHARACTERISTICS OF PCV VALVE ACCORDING TO SPOOL DYNAMIC BEHAVIOR (PCV 밸브의 스풀 동적거동에 따른 내부유동 특성에 관한 연구)

  • Lee J.H.;Lee Y.W.;Kim J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.223-227
    • /
    • 2005
  • A PCV valve is a part to control the flow rate of Blowby gas in a PCV system. A PCV system re-burns Blowby gas with fuel in a combustion chamber. Some gas enters to a crankcase room through the gap between piston ring and engine cylinder wall. This gas si called 'Blowby gas'. This gas causes many problems. In environmental view, Blowby gas includes about $25\~35\%$ hydrocarbon{HC) of total generated HC in an automobile. Hydrocarbon is a very harmful pollutant element in our life. In mechanical view, Blowby gas has some reaction with lubricant oil of crankcase room. Then, this causes lubricant oil contamination, crankcase corrosion and a decrease fo engine efficiency. Consequently, Blowby gas must be eliminated from a crankcase room. In this study, we simulated internal flow characteristics in a PCV valve according to spool dynamic behavior using local remeshing method And, we programmed our sub routine to simulate a spool dynamic motion. As results, spool dynamic behavior is periodically oscillated by the relationship between fluid force and elastic force of spring. And its magnitude is linearly increased by the differential pressure between inlet and outlet. Also, as spool is largely moved, flow area is suddenly decreased at orifice. For this reason, flow velocity is rapidly decreased by viscous effect.

  • PDF