• Title/Summary/Keyword: Dynamic Demands

Search Result 364, Processing Time 0.033 seconds

Seismic performance of gravity-load designed concrete frames infilled with low-strength masonry

  • Siddiqui, Umair A.;Sucuoglu, Haluk;Yakut, Ahmet
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.19-35
    • /
    • 2015
  • This study compares the seismic performances of two reinforced concrete frame specimens tested by the pseudo-dynamic procedure. The pair of 3-storey, 3-bay frames specimens are constructed with typical characteristics of older construction which is lacking seismic design. One of the specimens is a bare frame while the other is infilled with low-strength autoclave aerated concrete (AAC) block masonry. The focus of this study is to investigate the influence of low strength masonry infill walls on the seismic response of older RC frames designed for gravity loads. It is found that the presence of weak infill walls considerably reduce deformations and damage in the upper stories while their influence at the critical ground story is not all that positive. Infill walls tend to localize damage at the critical story due to a peculiar frame-infill interaction, and impose larger internal force and deformation demands on the columns and beams bounding the infills. Therefore the general belief in earthquake engineering that infills develop a second line of defence against lateral forces in seismically deficient frames is nullified in case of low-strength infill walls in the presented experimental research.

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

Secure SLA Management Using Smart Contracts for SDN-Enabled WSN

  • Emre Karakoc;Celal Ceken
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3003-3029
    • /
    • 2023
  • The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, including e-health, smart homes, and precision agriculture. However, this proliferation of services demands effective SLAs between customers and service providers, especially for critical services. Difficulties arise in maintaining the integrity of such agreements, especially in vulnerable wireless environments. This study proposes a novel SLA management model that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts in a straightforward manner. The proposed model ensures the persistence of network metrics and SLA provisions through smart contracts, eliminating the need for intermediaries to audit payment and compensation procedures. The reliability and verifiability of the data prevents doubts from the contracting parties. To meet the high-performance requirements of the blockchain in the proposed model, low-cost algorithms have been developed for implementing blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. Furthermore, a cryptographic signature control code is generated by wireless nodes using the in-memory private key and the dynamic random key from the smart contract at runtime to prevent tampering with data transmitted over the network. This control code enables the verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime is ensured by the flexible and high-performance infrastructure of the SDN architecture.

A Hybrid Upstream Bandwidth Allocation Method for Multimedia Communications in EPONs

  • Baek, Jinsuk;Kwak, Min Gyung;Fisher, Paul S.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • The Ethernet Passive Optical Network (EPON) has been considered to be one of the most promising solutions for the implementation of the Fiber To The Home (FTTH) technology designed to ameliorate the "last mile" bandwidth bottleneck. In the EPON network, an efficient and fair bandwidth allocation is a very important issue, since multiple optical network units (ONUs) share a common upstream channel for packet transmission. To increase bandwidth utilization, an EPON system must provide a way to adaptively allocate the upstream bandwidth among multiple ONUs in accordance to their bandwidth demands and requirements. We present a new hybrid method that satisfies these requirements. The advantage of our method comes from the consideration of application-specific bandwidth allocation and the minimization of the idle bandwidth. Our simulation results show that our proposed method outperforms existing dynamic bandwidth allocation methods in terms of bandwidth utilization.

  • PDF

A Framework of Outsourcing Decision-Making for Human Resource Information Systems

  • Lee, Chung-Shing;Lee, C.Christopher;Kwon, He-Boong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.551-556
    • /
    • 2007
  • This paper attempts to develop a framework for interrelationships among human resources information systems (HRIS), outsourcing, and corporate culture. This research investigates impacts of outsourcing HRIS on corporate culture. In this paper, we hypothesize that outsourcing corporate HRIS is less appealing (1) if the quality of product and customer service matters for a firm, (2) if a firm is concerned with a loss of intellectual property, and (3) if a firm requires maintenance of a distinctive human resource service function that is capable of meeting the challenges of fast changing customer demands in a dynamic business environment. In addition, this study argues companies must be aware of the total costs associated with HRIS before outsourcing its human resource functions. Finally, the impact on employee morale and performance must also be considered By outsourcing HRIS, managers will be able to spend more time and resources dedicated to an employee's professional career development.

  • PDF

Static/Dynamic Finite Element Analysis of Lightweight Suspension Part Fabricated by Application of phase Change Process (상변환 응용 경량 Suspension 부품의 정적/동적 유한요소해석)

  • 이정우;신현기;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.848-851
    • /
    • 2002
  • In the field of automobile industry, lightweight problems are very important in terms of reducing fuel and protecting environment. To satisfy these demands, the attempt to substitute aluminum automobile components for cast steel part has been actively carried out. To fabricate the aluminum automobile suspension part that has the same mechanical properties with cast steel part, design conditions such as shape and dimension of part shall be established. Therefore in this study, shape and dimension conditions of suspension part were proposed. Aluminum automobile suspension part was fabricated by semi-solid die-casting process under the obtained design conditions. Moreover to evaluate the possibility of application to the automobile component, stress and fatigue analysis were performed by using ABAQUS S/W and compared with those of conventional automobile suspension part.

  • PDF

Action to Improve the Reliability of Production Planning

  • Kim Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.4 s.12
    • /
    • pp.139-144
    • /
    • 2002
  • Management of today's dynamic projects requires a shift of focus from product to process. The purpose of traditional project controls is to conform performance to plan. The purpose of lean project controls is to make the best possible choices at each point in time during the course of the project, as well as contributing knowledge to the parent organizations so they can learn from project experience. The Lean Construction Institute(LCI) proposed the Last Planner System(LPS) capable of accomplishing that purpose, principally through controlling the quality of planning and of management processes themselves, as distinct from concentrating exclusively on project performance. The case project was a pilot project for the implementation of the Last Planner. Consequently, the coordination of the work on this project was extremely successful. The project had its share of challenges. The coordination did not prevent design problems, or supplier errors, but helped the team deal with the problems effectively while maintaining the work flow. The last planner helped the contractors know: a) who will be doing what and where, b) what each one needs from the others, and c) what are the project priorities. The system itself created a more collaborative environment, because it 'demands' that the subcontractors address these issues.

A Study on Combinatorial Dispatching Decision of Hybrid Flow Shop : Application to Printed Circuit Board Process (혼합 흐름공정의 할당규칙조합에 관한 연구: 인쇄회로기판 공정을 중심으로)

  • Yoon, Sungwook;Ko, Daehoon;Kim, Jihyun;Jeong, Sukjae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.10-19
    • /
    • 2013
  • Dispatching rule plays an important role in a hybrid flow shop. Finding the appropriate dispatching rule becomes more challenging when there are multiple criteria, uncertain demands, and dynamic manufacturing environment. Using a single dispatching rule for the whole shop or a set of rules based on a single criterion is not sufficient. Therefore, a multi-criteria decision making technique using 'the order preference by similarity to ideal solution' (TOPSIS) and 'analytic hierarchy process' (AHP) is presented. The proposed technique is aimed to find the most suitable set of dispatching rules under different manufacturing scenarios. A simulation based case study on a PCB manufacturing process is presented to illustrate the procedure and effectiveness of the proposed methodology.

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

A stochastic adaptive pushover procedure for seismic assessment of buildings

  • Jafari, Mohammad;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.477-492
    • /
    • 2018
  • Recently, the adaptive nonlinear static analysis method has been widely used in the field of performance based earthquake engineering. However, the proposed methods are almost deterministic and cannot directly consider the seismic record uncertainties. In the current study an innovative Stochastic Adaptive Pushover Analysis, called "SAPA", based on equivalent hysteresis system responses is developed to consider the earthquake record to record uncertainties. The methodology offers a direct stochastic analysis which estimates the seismic demands of the structure in a probabilistic manner. In this procedure by using a stochastic linearization technique in each step, the equivalent hysteresis system is analyzed and the probabilistic characteristics of the result are obtained by which the lateral force pattern is extracted and the actual structure is pushed. To compare the results, three different types of analysis have been considered; conventional pushover methods, incremental dynamic analysis, IDA, and the SAPA method. The result shows an admirable accuracy in predicting the structure responses.