• Title/Summary/Keyword: Dynamic Cutting

Search Result 271, Processing Time 0.022 seconds

An Analysis of the Dynamic Cutting Force on Face Milling Operation (正面 밀링 作業에서 動切削力의 解析)

  • 김희술;이상석;이병철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2268-2278
    • /
    • 1992
  • The vibratory modal for the face milling operation is assumed as a multi degrees of freedom system. The parameters of the system are determined based on the cutting experiment. From the relative displacements of this system the dynamic cutting forces were derived and simulated by the double modulation principle. The simulated cutting forces and measured cutting forces have a good agreement in time and frequency domains.

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

A Study on In-Porcess Sensor for Recognizing Cutting Conditions (복합가능형 절삭상태인식용 In-Process Sensor에 관한 연구)

  • Chung, Eui-Sik;Kim, Yeong-Dae;NamGung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.47-57
    • /
    • 1990
  • In-process recognition of the cutting states is one of the very important technologies to increase the reliability of mordern machining process. In this study, practical methods which use the dynamic component of the cutting force are proposed to recognize cutting states (i.e. chip formation, tool wear, surface roughness) in turning process. The signal processing method developed in this study is efficient to measure the maximum amplitude of the dynamic component of cutting force which is closely related to the chip breaking (cut-off frequency : 80-500 Hz) and the approximately natural frequency of cutting tool (5, 000-8, 000 Hz). It can be clarified that the monitoring of the maximum apmlitude in the dynamic component of the cutting force enables the state of chip formation which chips can be easily hancled and the inferiority state of the machined surface to be recognized. The microcomputer in-process tool wear monitor- ing system introduced in this paper can detect the determination of the time to change cutting tool.

  • PDF

Analysis of Dynamic Characteristics of End Mill for High Speed Cutting (고속가공용 엔드밀의 동특성 분석)

  • 임경화;유중학;이우영;장헌탁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.341-346
    • /
    • 2004
  • Performance Evaluation of end mills for high speed cutting has been performed in a view of dynamic characteristics and noise-vibration under operation. The tools tested in this research consist of three foreign country made and one korean made. In addition, numerical models using finite element method are established, which are confirmed by experimental results. The evaluation results has been feedback for developing high performance end mills fur high speed cutting tools.

  • PDF

Analysis of Dynamic Characteristics of End Mills for High Speed Cutting (고속가공용 엔드밀의 동특성 분석)

  • 장헌탁;유중학;이우영;임경화
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.478-483
    • /
    • 2003
  • Performance Evaluation of end mills for high speed cutting has been performed in a view of dynamic characteristics and noise-vibration under operation. The tools tested in this research consist of three foreign country made and one korean made. In addition, numerical models using finite element method are established, which are confirmed by experimental results. The evaluation results has been feedback fur developing high performance end mills for high speed cutting tools.

  • PDF

Prediction and Measurement of Cutting Force in Side-Milling (사이드 밀링 가공의 절삭력 측정 및 예측)

  • Lee, Chang-Ho;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.437-446
    • /
    • 2013
  • There have been numerous studies on end milling processes. However, these have been restricted to the application of tools for special cutting purposes. A side milling cutter can handle long, deep, and open slots in a more efficient manner, and it provides the best stability and productivity for this type of milling. In this paper, a method to predict the cutting forces in side milling is described, and simulated cutting forces are compared with those obtained by cutting experiments. In particular, the side milling process easily generates relative motion between the tools and the workpiece because it produces intermittent cutting forces that cause vibrations over a wide frequency range. Therefore, the application of a dynamic cutting model instead of a static cutting model is appropriate to forecast the cutting forces more accurately.

An analysis of cutting process with ultrasonic vibration by ARMA model (자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석)

  • I.H. Choe;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

A study on the chatter vibration of two degree of freedom systems (2자유도 채터진동의 특성에 관한 연구)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Kim, Byeong-Ryoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.216-226
    • /
    • 1993
  • Three dimensional cutting is considered as an equivalent orthogonal cutting through the plane containing both the cutting velocity vector and the chip flow velocity vector in dynamic cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static cutting. Particular attention is paid to the energy supplied to the vibratory system of cutting tool with two degree of freedom. In this approach, the phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angle of the fluctuating cutting force is considered in point of stability limits. Chatter vibration can be effectively suppressed by relatively increasing the spring constant and the damping coefficient of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theoretical value and experimental results.

  • PDF

A S tudy on the Dynamic Performance Tests of Machine Tools(I) (공작기계 의 동적 성능 시험 및 평가 에 관한 연구 (I))

  • 이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.190-201
    • /
    • 1985
  • Direct cutting tests was carried out to evaluate the dynamic performance of lathes under various cutting conditions. Significant factors influencing the chatter limits were identified through use of analysis of variance. Dynamic performances of two lathes were compared and the merits and drawbacks of the direct cutting test were discussed. Exciting-direct-cutting test method was newly proposed as a more rational method of dynamic performance test. The basic theory and experiments of the test were explained. The results shows that the method can be used as a powerful tool for the evaluation and the improvement of dynamic performance of machine tools.

Vibration Experiment and Stability Prediction of a Universal Machining Center (만능형 머시닝센터의 진동실험 및 절삭안정성 예측)

  • 이신영;김종원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.219-224
    • /
    • 2004
  • There have been many researches on machine tool vibration and chatter to obtain assessment procedure and more productivity. In this paper chatter limit is predicted on a universal machining center which used a parallel mechanism. The prediction method uses the combination of structural dynamic characteristics and cutting dynamics. So the dynamic characieristics were obtained by vibration experiments. We showed the unstable cutting conditions, and from them we could plot the unstable borderlines.

  • PDF