• Title/Summary/Keyword: Dynamic Cutting

Search Result 271, Processing Time 0.028 seconds

3차원 절삭가공에서의 2자유도 채터안정성 해석

  • 김병룡;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.31-35
    • /
    • 2001
  • Three dimensional dynamic cutting can be postulated as an equivalent orthogonal dynamic cutting through the plane containing both the cutting vector and the chip flow velocity vector in cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static three dimensional cutting experiments. Particular attention is paid to the energy supplied to the vibration of the tool behind the vertical vibration and the direction. The phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angel of the fluctuating cutting force must be regarded in point of stability limits. Chatter vibration can effectively be suppressed by enlarging the dynamic rigidity of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theory and the critical width of cut determined by experiments.

A Study about Dynamic Behavior of the Face Milling Cutter to Minimize Resultant Cutting Force (최소 절삭력형 정면밀링 커터의 동적거동에 관한 연구)

  • Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • On face milling operation a newly optimal tool, which can minimize the resultant cutting forces resulted from the cutting force model, was designed and manufactrued. Cutting experiments using the new and conventional tools were carried out and the cutting forces resulted from those tools were analyzed in time and frequency domains. The performance of the optimized cutter was tested through the dynamic cutting forces resulted form the newly designed tool are much reduced in comparision with those from the conventional tool. By reducing the dynamic cutting force fluctuations, machine tool vibrations can be reduced, and stable cutting operation can be carried out.

  • PDF

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF

On the Cutting Resistance in Drilling Operation (Drill 가공에서의 절삭저항에 관한 연구)

  • Kim, Yun-Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.2
    • /
    • pp.43-59
    • /
    • 1985
  • In relation to the machinability of drilling operation, experiments were made to investigate the effect of cutting condition on static as well as dynamic cutting resistances in cutting plane carbon steel (SM 45 C) with H.S.S. twist drills. The results were as follows. 1) The static cutting resistances on carbon steel can practically be calculated by the following equations which were derived from experimental result. The deviation from the experimental values was less than 8% and 13% for cutting torque and thrust respectively. For cutting torque M: M=0.019 $H_B\;{f^{0.68}d^{1.68}$ For thrust T: T=0.400406 $r^{0.6}d^{0.68}$ + 0.1835 $H_BC^2$(where $H_B$: Brinnel hardness) 2) The static components of cutting resistance are increased exponentially with increasing drill diameter and feed rate. On the effect of drill diameter, the dynamic components of torque are decreased with increasing dirll diameter because of rigidity, the dynamic components of thrust being not effected with the changes. 3) As feed rates increase, the dynamic components of torque rather decrease although its changes on thrust components are unstable. 4) The static components of cutting resistance and dynamic component of torque are slightly decreased in accordance with the increase of spindle speed although its dynamic thrust components are not effected by the spindle speed.

  • PDF

채터 진동에서의 동적 절삭력의 모델링과 안정성 해석

  • 강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.28-32
    • /
    • 1992
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is pressented in order to predict dynamic cutting force from static cutting data. Chatter vibration occurring in the tool structure of lathe is treated theoretically, considering the regenerative effect. The Stability Analysis is carried out by a two degress of freedom system. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coeccicient which can be determined from the cutting mechanics. The static cutting coefficient controls high speed chatter stability, while the dynamic cutting coefficient dominates low chatter stability. From above considerations, the cirtical width of cut which governs chatter stability was obtained.

A Development of Combined-Type Tool Dynamometer for Ultraprecision Lathe with Piezo-Film Accelerometer (복합 압전필름형 가속도계를 이용한 초정밀 선반 공구동력계의 개발에 관한 연구)

  • Kim, J.D.;Kim, D.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 1995
  • The cutting force is the most important variable to understand the mechanics of ultra-precision machining. Most dynamometers, however, monitor the static cutting force only. But it is necessary to measure the dynamic cutting force to clarify the machinability of the material, the formation of the chip, chatter and the wear of the tool. In this research, measurement of the dynamic cutting force in order to clarify the machin-ability of the material, the formation of the chip, chatter and the wear of the tool has been conducted. A combined-type dynamometer which could measure the static cutting force and the dynamic cutting force by use of strain gauges and a piezo-film accelerometer has been developed. An analysis of the dynamometer also has been carried out.

  • PDF

Study on Prediction of Surface Roughness in Hard Turning by Cutting Force (절삭력에 의한 하드터닝의 표면조도 예측에 관한 연구)

  • 이강재;양민양;하재용;이창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1768-1771
    • /
    • 2003
  • Hard turning replaces grinding for finishing process with expectations of higher productivity and demanded surface quality. Especially for the surface roughness as surface quality demanded in finishing process of hard turning, know-how of machining characteristics of hardened materials by cutting force analysis should be accumulated in company with achievement of precision of elements and high stiffness design technology in hard turning. Considering chip formation mechanism of hardened materials, adequate cutting conditions are selected for machining experiments and cutting forces are measured according to cutting conditions. Increase of cutting forces especially thrust force and increase of dynamic instability could occur in hard turning. Analysis of dynamic characteristics of the cutting forces is executed to investigate relation between dynamic instability and surface roughness in hard turning. Investigation on effects of relative motion of machining system generated by vibration due to dynamic instability shows that ultimate surface roughness could be predicted considering relative motion of machining system with geometrical surface roughness.

  • PDF

Development of a Cutting Force Monitoring System for a CNC Lathe (CNC 선반에서의 절삭력 감지 시스템 개발)

  • Heo, Geon-Su;Lee, Gang-Gyu;Kim, Jae-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.219-225
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

A study on the 3-stage 3-dimensional guillotine cutting-stock problem (3차원 기로틴 3단계 자재절단 방법에 관한 연구)

  • 김상열;박순달
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.276-279
    • /
    • 1996
  • This paper deals with the method providing an exact solution to the 3-dimensional guillotine cutting stock problem. We suggest a 3-stage sutting method using the property that cubic material has to be cut into 2-dimensional planes firstly. This method requires more stocks that the general guillotine cutting methods but can save work force. By using the 1-dimensional dynamic programming, we reduce the computational time and the memory requirement in the 3-stage guillotine cutting method.

  • PDF