• Title/Summary/Keyword: Dynamic Compression

Search Result 602, Processing Time 0.02 seconds

A study of the cause of metal failure in treatment of femur shaft fracture - Fractographical and clinical analysis of metal failure- (대퇴골 간부 골절시 사용한 금속물의 금속부전(Metal failure)의 기전에 대한 연구)

  • Jeon, Chun-Bae;Seo, Jae-Sung;Ahn, Jong-Chul;Ahn, Myun-Whan;Ihn, Joo-Chyl
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1990
  • The author fractographically analyized the cause of metal failure(the first time this procedure has been used for this metal failure)and also analyized it clinically. In this study, I selected eight cases which have been analyized fractographically. In all these cases, the analysis was done after treatment of metal failure of implants internally fixed to femur shaft fractures at the Department of Orthopedic Surgery, Yeung-Nam University Hospital during the six year period from May 1983 to September 1989. 1. Metal failure occured in five dynamic-compression plates, one Jewett nail, one screw in Rowe plate, and one interlocking nail. 2. The clinical cause of metal failure was deficiency of medial butress in five cases, incorrect position of implant in one case, and incorrect selection of implant in two cases. 3. The time interval between internal fixation and metal failure was four months in one case, between five months to twelve months in six cases, three years in one case. 4. The fractographically analytical cause of metal failure was ; first, impact failure, one case, second, fatigue failure, six cases, machining mark(stress liser), four cases type : low consistent cyclic fatigue failure irregular cyclic fatigue failure third, stress corrosion crack, one case. 5. 316L Stainless Steel has good resistance to corrosion. However, when its peculiar surface film is destroyed by fretting, it shows pitting corrosion. This is, perhaps, the main cause of metal failure. 6. It is possible that mechanical injury occured in implants during the manufacturing of implants or that making a screw hole is the main cause of metal failure.

  • PDF

The Effect of Moisture Content on the Compressive Properties of Korean Corn Kernel (함수율(含水率)이 옥수수립(粒)의 압축특성(壓縮特性)에 미치는 영향(影響))

  • Lee, Han Man;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 1986
  • In order to promote mechanization of corn harvesting in Korea, this study was conducted to find out the effect of moisture content on compressive properties such as force, deformation, energy and modulus of stiffness to the bioyield and the rupture point for Korean corn kernel. In this study, the loading positions of corn were flat, edge, longitude and the moisture contents were about 13, 17, 21, 25% in wet basis. The compression test was carreied out with flat plate by use of dynamic straingage for three varieties of Korean corn under quasi-static force when the loading rate was 1.125mm/min. The results of this study are summarized as follows; 1. When the moisture content of corn ranged from 12.5 to 24.5 percent, at flat position, the bioyied force was in the range of 13.63-26.73 kg and the maximum compressive strength was in the range of 21.55-47.65kg. Their values were reached minimum at about 17% and maximum at about 21% moisture content. The bioyield force was in the range of 13.58-6.70kg at edge position and the maximum compressive strength which was 16.42 to 7.82kg at edge position was lower than that which was 18.55-9.05kg at longitudinal position. 2. Deformation of corn varied from 0.43 to 1.37 mm at bioyield point and from 0.70 to 2.66mm at rupture point between 12.5 to 24.5% moisture content. As the moisture content increased, deformation was increased. 3. The moduli of resilience and toughness of corn ranged from 2.60 to 8.57kg. mm and from 6.41 to 34.36kg. mm when the moisture content ranged from 12.5 to 24.5 percent, respectively. As the moisture content increased, the modulus of toughness was increased at edge position and decreased at longitudinal position. And their values were equal each other at 22-23% moisture content. 4. The modulus of stiffness was decreased with increase in the moisture content. Its values ranged from 32.07 to 5.86 kg/mm at edge position and from 42.12 to 18.68kg/mm at flat position, respectively. Also, the values of Suweon 19 were higher than those of Buyeo. 5. It was considered that the compressive properties of corn at flat position were more important on the design data for corn harvesting and processing machinery than those of edge or longitudinal position. Also, grinding energy would be minimized when a corn was processed between about 12.5 to 17% moisture content and corn damage would be reduced when a corn was handled between about 19 to 24% moisture content in wet basis.

  • PDF