• 제목/요약/키워드: Dynamic Compression

검색결과 603건 처리시간 0.019초

Ti-6Al-4V 합금의 고온변형거동 규명 (Characterization of Hot Deformation Behavior of Ti-6Al-4V Alloy)

  • 염종택;김두현;나영상;박노광
    • 소성∙가공
    • /
    • 제10권4호
    • /
    • pp.347-354
    • /
    • 2001
  • Compression tests were carried out to investigate the hot-deformation behavior of Ti-6Al-4V alloy in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-i}$ to $10s^{-1}$. Under the given test conditions, the hot-deformation of Ti-6Al-4V alloy was mainly led by dynamic recovery rather than by dynamic recrystallization. The activation energy for the plastic deformation in $\alpha+\beta$ field was about 894 kJ/mol and $\beta$ field was 332kJ/mo1. Processing map for hot working are developed on the basis of the variations of efficiency of power dissipation($\eta$=2m/m+1) and flow instability criterion using the dynamic material model. The optimum process condition in the ($\alpha+\beta$) field was obtained at the temperature ranges of $930^{\circ}C$ to $955^{\circ}C$$^{\circ}C$ and a strain rate of $10^{-3}s{-1}$.

  • PDF

화운데이션 소재의 역학적 특성이 의복압에 미치는 영향 (The Effect of Dynamic Characteristics of Knitted Fabrics on the Clothing Pressure of Foundation Wear)

  • 정명선;류덕환
    • 한국생활과학회지
    • /
    • 제11권1호
    • /
    • pp.79-93
    • /
    • 2002
  • The purpose of this study was to determine the effect of dynamic characteristics of knitted fabrics on the clothing pressure of foundation. Five knitted fabrics of foundation were selected by different fiber types and blended ratios for the study. The dynamic characteristics of foundation wears made with five different fabrics were measured by KES-FB system method. The results of this study were as follows: 1. The tensile linearity and resilience of f1 were lower than those of other samples. While the tensile resistances of f1, f2 and f4 samples were high, the coefficients of friction of them were low. The bending rigidity and geometric roughness of f5 were higher than the others. 2. The clothing pressure of f3 all-in-one sample was the highest, and followed by f5, f4, f2 and f1, respectively. This result showed that the compression resilience affected on the clothing pressure greatly. 3. In terms of the clothing pressure by posture, the clothing pressure at $90^{\circ}$ bending posture was the highest and followed by that at standing and one-leg-up, respectively. The back part of abdomen was pressured most at $90^{\circ}$ bending posture.

  • PDF

Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell

  • Foroutan, Kamran;Ahmadi, Habib
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.291-308
    • /
    • 2020
  • In this paper, a numerical method is utilized to study the effect of a new vibration absorber on vibration response of the stiffened functionally graded (SFG) cylindrical shell under a couple of axial and transverse compressions. The material composition of the stiffeners and shell is continuously changed through the thickness. The vibration absorber consists of a mass-spring-damper system which is connected to the ground utilizing a linear local damper. To simplify, the spring element of the vibration absorber is called global potential. The von Kármán strain-displacement kinematic nonlinearity is employed in the constitutive laws of the shell and stiffeners. To consider the stiffeners in the model, the smeared stiffener technique is used. After obtaining the governing equations, the Galerkin method is applied to discretize the nonlinear dynamic equation of system. In order to find the nonlinear vibration responses, the fourth order Runge-Kutta method is utilized. The influence of the stiffeners, the dynamic absorber parameters on the vibration behavior of the SFG cylindrical shell is investigated. Also, the influences of material parameters of the system on the vibration response are examined.

Interfacial Shear Strength and Thermal Properties of Electron Beam-Treated Henequen Fibers Reinforced Unsaturated Polyester Composites

  • Pang Yansong;Cho Donghwan;Han Seong Ok;Park Won Ho
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.453-459
    • /
    • 2005
  • Natural fiber henequen/unsaturated polyester (UPE) composites were fabricated by means of a compression molding technique using chopped henequen fibers treated at various electron beam (EB) dosages. The interfacial shear strength (IFSS), dynamic mechanical properties, and thermal expansion behavior were investigated through a single fiber microbonding test, fractographic observation, dynamic mechanical analysis, and thermomechanical analysis, respectively. The results indicated that the interfacial and dynamic mechanical properties significantly depended on the level of the EB treatment irradiated onto the henequen fiber surfaces. The effect of EB treatment on the IFSS, storage modulus and fracture surface of the henequen/UPE composites agreed with each other. The results of this study also suggested that the modification of henequen fiber surfaces at 10 kGy EB is the most effective for improving the interfacial properties of the henequen/UPE composites.

사각 튜브 부재의 압괴강도에 대한 동적 영향 평가 (Dynamic Effects for Crushing Strength of Rectangular Tubular Members)

  • 양박달치
    • 대한조선학회지
    • /
    • 제27권1호
    • /
    • pp.17-23
    • /
    • 1990
  • 세장비가 작은 구조부재는 충돌과 같은 상황하에서 압축을 받는 경우, 축방향으로 접혀지는 소성 변형에 의해서 충돌에너지의 대부분을 흡수한다. 이 경우, 관성을 무시한다 하더라도 연강 부재의 정적인 하중에 대한 압괴강도에 비해서 변형률에 의한 영향으로 인해 동적 압괴 강도가 높아진다는 것은 잘 알려진 사실이다. 본 논문에서는 부재의 정적 하중에 대한 압괴강도 추정법을 소성변형의 운동학적 방법을 이용하여 수행하였다. 종래의 항복하중에 변형률을 고려한 동적 압괴 하중 추정치가 동적 영향을 과대평가하게 되므로 평균 소성변형 응력의 변형률에 대한 영향을 고려하여 튜브부재의 동적 압괴 강도 추정을 유도하였고, 이를 발표된 실험결과와 비교 검토하였다. 본 연구에서 얻은 만족스러운 결과를 토대로 하여 앞으로 이 방법을 선박의 충돌시 선수구조의 충돌에너지 흡수의 추정에 적용시킬 것이다.

  • PDF

Al 7075합금의 열간단조와 반응고 단조에 있어서 조직, 성형성 및 경도 특성 비교 (Comparison of Conventional Hot Forging and Thixoforging of Al 7075 Alloy According to Microstructures, Formability and Hardness)

  • 이상용;전재일;이정환;이영선;신평우
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.620-630
    • /
    • 1998
  • Conventional hot forging and thixoforging of Al 7075 alloy have been compared with respect to microstructures, formability and hardness. Two distinctive temperature-strain rate ranges for hot forging of Al 7075 alloy were observed from the results of simple compression tests with strain rates of 10-3∼101 sec-1 in the temperatures between $250^{\circ}C$ and $500^{\circ}C.$ In the dynamic recovery range (low temperature-high strain rate range) multi-stage forging was necessary to form a complex shape part due to the lack of formability. In the high temperature-low strain rate range, in which dynamic recrystallization takes place a complex shaped park could be formed by single-stage forging. About 50% cold working in the SIMA process was necessary to get a fine and homogeneous microstructures. Microstructural study suggest that thixoforged Al 7075 part has fine grains and homogeneous microstructures. Its hardness number is almost same to that of conventional hot forged part after aging treatment.

  • PDF

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

Strength and stiffness characteristics of cement paste-slime mixtures for embedded piles

  • Yong-Hoon Byun;Mi Jeong Seo;WooJin Han;Sang Yeob Kim;Jong-Sub Lee
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.359-370
    • /
    • 2023
  • Slime is produced by excavation during the installation of embedded piles, and it tends to mix with the cement paste injected into the pile shafts. The objective of this study is to investigate the strength and stiffness characteristics of cement pasteslime mixtures. Mixtures with different slime ratios are prepared and cured for 28 days. Uniaxial compression tests and elastic wave measurements are conducted to obtain the static and dynamic properties, respectively. The uniaxial compressive strengths and static elastic moduli of the mixtures are evaluated according to the curing period, slime ratio, and water-cement ratio. In addition, dynamic properties, e.g., the constrained, shear, and elastic moduli, are estimated from the compressional and shear wave velocities. The experimental results show that the static and dynamic properties increase under an increase in the curing period but decrease under an increase in the slime and water-cement ratios. The cement paste-slime mixtures show several exponential relationships between their static and dynamic properties, depending on the slime ratio. The bearing mechanisms of embedded piles can be better understood by examining the strength and stiffness characteristics of cement paste-slime mixtures.

TiC-Mo 고용체 단결정의 고온 압축변형 특성 (Deformation Property of TiC-Mo Solid Solution Single Crystal at High Temperature by Compression Test)

  • 신순기
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.625-631
    • /
    • 2014
  • To investigate the deformation properties of TiC-(5-20) mol% Mo solid solution single crystals at high temperature by compression testing, single crystals of various compositions were grown by the radio frequency floating zone technique and were deformed by compression at temperature from 1250K to 2270K at strain rates from $5.1{\times}10^{-5}$ to $5.9{\times}10^{-3}/s$. The plastic flow property of solid solution single crystals was found to be clearly different among a three-temperature range (low, intermediate and high temperature ranges) whose boundaries were dependent on the strain rate. From the observed property, we conclude that the deformation in the low temperature range is controlled by the Peierls mechanism, in the intermediate temperature range by the dynamic strain aging and in the high temperature range by the solute atmosphere dragging mechanism. The work softening tends to become less evident with an increasing experimental temperature and with a decreasing strain rate. The temperature and strain rate dependence of the critical resolved shear stress is the strongest in the high temperature range. The curves are divided into three parts with different slopes by a transition temperature. The critical resolved shear stress (${\tau}_{0.2}$) at the high temperature range showed that Mo content dependence of ${\tau}_{0.2}$ with temperature and the dependence is very marked at lower temperature. In the higher temperature range, ${\tau}_{0.2}$ increases monotonously with an increasing Mo content.

Strength and Efficiency during Lap Joining Molding of GMT-sheet

  • Kim, Jin-Woo;Kim, Hyoung-Seok;Kim, Tae-Ik;Lee, Dong-Gi;Sim, Jae-Ki
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1018-1023
    • /
    • 2012
  • In order to substitute and recycle the existing automobile parts for GMT-sheet, researches on the effects of GMT-sheet on the establishment of precise joining strength, joining condition that are lap length of joining part, compression ratio, and closure speed must be carried out but until now. Besides, many researches on adhesion joint had been conducted until now but no systematic research on press lap joint of GMT-sheet has been implemented until recently and the reliability of joining strength is not yet established. In press lap joining molding of GMT-sheet, tensile stress and lap joining connection efficiency was increased according to the increase of lap length L. However, as the increase of compression ratio and fiber content ratio per unit area was higher in tensile test, it has caused the deterioration of lap joining efficiency after joining molding of GMT-sheet. Clarify joining strength and lap joining efficiency during high temperature compression press lap joining molding of GMT-sheet and research data regarding to the lap length of joining part was presented. The purpose of this study is to contribute to the substitution of existing products as well as usage development in non-automobile field and also to find out precise dynamic characteristics as designing data of structures.