• 제목/요약/키워드: Dynamic Behavior Analysis

검색결과 2,405건 처리시간 0.029초

연쇄붕괴의 동적거동을 고려한 새로운 등가정적해석 기법 (New Equivalent Static Analysis Method of Dynamic Behavior during Progressive Collapse)

  • 김치경;이재철
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.239-246
    • /
    • 2007
  • 본 논문에서는 한두 부재의 순간적 결손에 따른 동적 거동을 정적해석을 통하여 합리적이고 효율적으로 해석할 수 있는 등가정적 연쇄붕괴 해석기법을 제시한다. 제시된 기법은 부재 결손에 따른 구조물 강성 변화 및 순간적 결손에 따른 동적거동 확대 효과를 등가의 하중으로 치환한 강성등가하중을 초기 구조물에 적용하여 해석하는 방법으로서 기둥을 하나씩 제거해 가며 반복해석을 수행해야 하는 연쇄붕괴해석 특성에 매우 효율적이면서도 신뢰성이 높은 장점을 갖는다. 제시한 강성등가하중에 의한 해석결과를 시간이력해석결과 및 GSA에 의한 해석결과와 비교한 결과, 휨모멘트, 축력, 및 수직변위 등의 측면에서 GSA에 의한 해석결과에 비해 시간이력해석결과에 상당히 근접하는 결과를 나타냈다. 이를 통해 강성등가 하중에 의한 해석기법이 GSA에 의한 정적해석방법을 대체하는 새로운 정적해석기법으로서 효용성이 있음을 확인하였다.

다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구 (A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody)

  • 구남국;노명일;하솔;신현경
    • 한국CDE학회논문집
    • /
    • 제20권1호
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

자켓형 해양 구조물의 동적거동에 대한 민감도 연구 (A Study on the Sensitivity of Dynamic Behavior of Jacket Type Offshore Structure)

  • 이정탁;이강수;신상학;손충렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.110-118
    • /
    • 2008
  • This thesis introduces a study conducted by ANSYS, Finite Element Analysis program, on dynamic behavior by thickness of a chord and a brace of a jacket typed marine structure. As load condition to work on offshore structures is getting much more various, it becomes more important to design the structures and operate them. In addition, stability is also required. As the result of this study, it was proved that wind and wave load gives more affection on frequency than on added mass in the Modal Analysis. Also, the chord and brace affect stiffness more than diagonal brace according to sensitivity analysis.

  • PDF

한국형 고속전철의 350Km/h 주행에 대한 진동 가속도 분석 (Analysis of the Dynamic Vibration for Korean High Speed Train at Speed 350 Km/h)

  • 박찬경;김기환;목진용;김영국;김석원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.467-472
    • /
    • 2005
  • The characteristics of dynamic vibration are generally analyzed by an acceleration of a car body of high speed train and the acceleration can be applied to evaluation of running safety. The test of process and the analysis method about it are well explained on UIC Code 518 OR which is the spacial international standard about running safety and dynamic behavior on the line test for railway vehicle. Korean High Speed Train designed to operate at speed 350km/h has been tested on high speed line since it was developed in 2002 and it recorded the highest speed 352.4km/h at the 16th Dec. 2004 in Korea. This paper includes the analysis of running behavior of this train at speed 350km/h and also the analysis of dynamic safety is presented in it, extending to the range of high speed while the UIC 518 limit the speed below 200km/h.

  • PDF

Seismic Assessment and Performance of Nonstructural Components Affected by Structural Modeling

  • Hur, Jieun;Althoff, Eric;Sezen, Halil;Denning, Richard;Aldemir, Tunc
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.387-394
    • /
    • 2017
  • Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

나선홈을 가진 공기 동압베어링의 동역학적 거동 해석 (Analysis of Dynamic Behavior of Spiral Grooved Air-Dynamic Bearings)

  • 신용호;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.498-501
    • /
    • 2000
  • Air dynamic bearings are inherently unstable in dynamic behavior due to the varying angle of a force produced and the nonlinear characteristics of stiffness. In this study, such dynamic behavior is obtained and compared with experimental results. A body axis coordinate system is employed to avoid the change of a moment of inertia. FDM is used to calculate the pressure distribution on the bearing surface and then the force acting on the rotor was calculated by integrating the pressure distribution. By integrating accelerations which are calculated from the equations of motion using the 4th order Runge-Kutta method, the pose of the bearing at each time step is obtained.

  • PDF

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권6호
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.

Use of bivariate gamma function to reconstruct dynamic behavior of laminated composite plates containing embedded delamination under impact loads

  • Lee, Sang-Youl;Jeon, Jong-Su
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.1-11
    • /
    • 2019
  • This study deals with a method based on the modified bivariate gamma function for reconstructions of dynamic behavior of delaminated composite plates subjected to impact loads. The proposed bivariate gamma function is associated with micro-genetic algorithms, which is capable of solving inverse problems to determine the stiffness reduction associated with delamination. From computing the unknown parameters, it is possible for the entire dynamic response data to develop a prediction model of the dynamic response through a regression analysis based on the measurement data. The validity of the proposed method was verified by comparing with results employing a higher-order finite element model. Parametric results revealed that the proposed method can reconstruct dynamic responses and the stiffness reduction of delaminated composite plates can be investigated for different measurements and loading locations.

트림 부품의 부착에 따른 중형 버스의 동특성 변화 분석 (Analysis of Dynamic Characteristics Change of Middle-Sized Bus by Attachment of Trim Components)

  • 이상범;임홍재
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.88-93
    • /
    • 2004
  • In general, a fundamental structural design consideration for an automobile is the overall dynamic behavior in bending and torsion. Dynamic behavior of the automobile are mainly influenced by the structural stiffness of B.I.W.(body-in-white) and the physical property of trim components. In this paper, the modeling techniques for various trim components of middle-sized bus are presented, and the dynamic effects of the trim components on the vibration characteristics of the bus are investigated. The $1^{st}$ torsional frequency is decreased by attaching windshield and backlite to the B.I.W., but the $1^{st}$ vertical bending frequency and the $1^{st}$ lateral bending frequency are increased. The natural frequencies of the bus are decreased by attaching doors and windows. And also, the natural frequencies of the bus are large decreased by attaching seats, instrument panel etc. The study shows that the dynamic characteristics of the bus can be effectively predicted in the initial design stage.

Dynamic Elastica에 의한 유연매체의 거동해석 (Analysis of Flexible Media Behavior by Dynamic Elastica)

  • 홍성권;지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.600-605
    • /
    • 2004
  • In many machines handling lightweight and flexible media such as magnetic tape drives, xerographic copiers and sewing machines, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite differential method. The parametric cubic curve is applied for defining the guide shape. The dynamic contact conditions suggested by Klarbring is used to predict the direction of the flexible media according to the initial velocity and the friction coefficient. The analysis is also compared to the conventional model, showing that after contacting a $45^{\circ}$ wall, the directions of flexible media of two models are different.

  • PDF