• Title/Summary/Keyword: Dynamic Bayesian Network

Search Result 66, Processing Time 0.017 seconds

A Study on FSA Application for Human Errors of Dynamic Positioning Vessels Incidents

  • Chae, Chong-Ju
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.259-268
    • /
    • 2017
  • Formal Safety Assessment (FSA) has been mostly implemented on the hardware aspects of vessels. Although there are guidelines regarding human error FSAs, there have not been many assessments in such areas. To this end, this study seeks to use precedent studies for the safe operation of DP vessels, conducting an FSA regarding human error of DP LOP (Loss of Position) incidents. For this, the study referred to precedent studies for the frequency of DP LOP incidents caused by human errors, adding the severity of LOP incidents, and then applying them to the Bayesian network. As a result, the study was able to confirm that among DP LOP incidents caused by human errors, the drive-off from skill-based errors was 74.3% and the drive-off from unsafe supervision was 50.5%. Based on such results, RCOs (Risk Control Options) were devised through a brainstorming session with experts coming up with proposals including providing mandatory DPO training, installing DP simulator on the vessels, drawing up measures to understanding the procedures for safe operation of DP vessels. Moreover, it was found that mandatory DPO training is reasonable in terms of cost benefits and that while installing a DP simulator is not suitable in terms of cost benefits, it can significantly reduce risks when operating DP vessels.

A dynamic Shortest Path Finding with Forecasting Result of Traffic Flow (교통흐름 예측 결과틀 적용한 동적 최단 경로 탐색)

  • Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.988-995
    • /
    • 2009
  • One of the most popular services of Telematics is a shortest path finding from a starting point to a destination. In this paper, a dynamic shortest path finding system with forecasting result of traffic flow in the future was developed and various experiments to verify the performance of our system using real-time traffic information has been conducted. Traffic forecasting has been done by a prediction system using Bayesian network. It searched a dynamic shortest path, a static shortest path and an accumulated shortest path for the same starting point and destination and calculated their travel time to compare with one of its real shortest path. From the experiment, over 75%, the travel time of dynamic shortest paths is the closest to one of their real shortest paths than one of static shortest paths and accumulated shortest paths. Therefore, it is proved that finding a dynamic shortest path by applying traffic flows in the future for intermediated intersections can give more accurate traffic information and improve the quality of services of Telematics than finding a static shortest path applying by traffic flows of the starting time for intermediated intersections.

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

Hunan Interaction Recognition with a Network of Dynamic Probabilistic Models (동적 확률 모델 네트워크 기반 휴먼 상호 행동 인식)

  • Suk, Heung-Il;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.955-959
    • /
    • 2009
  • In this paper, we propose a novel method for analyzing human interactions based on the walking trajectories of human subjects. Our principal assumption is that an interaction episode is composed of meaningful smaller unit interactions, which we call 'sub-interactions.' The whole interactions are represented by an ordered concatenation or a network of sub-interaction models. From the experiments, we could confirm the effectiveness and robustness of the proposed method by analyzing the inner workings of an interaction network and comparing the performance with other previous approaches.

Transmission Delay Estimation-based Forwarding Strategy for Load Distribution in Software-Defined Network (SDN 환경에서 효율적 Flow 전송을 위한 전송 지연 평가 기반 부하 분산 기법 연구)

  • Kim, Do Hyeon;Hong, Choong Seon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In a centralized control structure, the software defined network controller manages all openflow enabled switched in a data plane and controls the telecommunication between all hosts. In addition, the network manager can easily deploy the network function to the application layer with a software defined network controller. For this reason, many methods for network management using a software defined network concept have been proposed. The main policies for network management are related to traffic Quality of Service and resource management. In order to provide Quality of Service and load distribution for network users, we propose an efficient routing method using a naive bayesian algorithm and transmission delay estimation module. In this method, the forwarding path is decided by flow class and estimated transmission delay result in the software defined network controller. With this method, the load on the network node can be distributed to improve overall network performance. The network user also gets better dynamic Quality of Service.

Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling (신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.930-938
    • /
    • 2007
  • Captions which appear in images include information that relates to the images. In order to obtain the information carried by captions, the methods for text extraction from images have been developed. However, most existing methods can be applied to captions with fixed height of stroke's width. We propose a method which can be applied to various caption size. Our method is based on connected components. And then the edge pixels are detected and grouped into connected components. We analyze the properties of connected components and build a neural network which discriminates connected components which include captions from ones which do not. Experimental data is collected from broadcast programs such as news, documentaries, and show programs which include various height caption. Experimental result is evaluated by two criteria : recall and precision. Recall is the ratio of the identified captions in all the captions in images and the precision is the ratio of the captions in the objects identified as captions. The experiment shows that the proposed method can efficiently extract captions various in size.

Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.817-822
    • /
    • 2005
  • Recently tile study that exploits visual information for tile services of robot in indoor environments is active. Conventional image processing approaches are based on the pre-defined geometric models, so their performances are likely to decrease when they are applied to the uncertain and dynamic environments. For this, diverse researches to manage the uncertainty based on the knowledge for improving image recognition performance have been doing. In this paper we propose a Bayesian network modeling method for predicting the existence of target objects when they are occluded by other ones for improving the object detection performance of the service robots. The proposed method makes object relationship, so that it allows to predict the target object through observed ones. For this, we define the design method for small size Bayesian networks (primitive Bayesian netqork), and allow to integrate them following to the situations. The experiments are performed for verifying the performance of constructed model, and they shows $82.8\%$ of accuracy in 5 places.

A Constrained Learning Method based on Ontology of Bayesian Networks for Effective Recognition of Uncertain Scenes (불확실한 장면의 효과적인 인식을 위한 베이지안 네트워크의 온톨로지 기반 제한 학습방법)

  • Hwang, Keum-Sung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.549-561
    • /
    • 2007
  • Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.

Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm (Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.395-400
    • /
    • 2011
  • In this paper, we propose an study of the facial emotion recognition considering the dynamical variation of emotional state in facial image sequences. The proposed system consists of two main step: facial image based emotional feature extraction and emotional state classification/recognition. At first, we propose a method for extracting and analyzing the emotional feature region using a combination of Active Shape Model (ASM) and Facial Action Units (FAUs). And then, it is proposed that emotional state classification and recognition method based on Hidden Markov Model (HMM) type of dynamic Bayesian network. Also, we adopt a Harmony Search (HS) algorithm based heuristic optimization procedure in a parameter learning of HMM in order to classify the emotional state more accurately. By using all these methods, we construct the emotion recognition system based on variations of the dynamic facial image sequence and make an attempt at improvement of the recognition performance.