• 제목/요약/키워드: Dynamic Backpropagation

검색결과 57건 처리시간 0.021초

수정된 엘만신경망을 이용한 외환 예측 (Predicting Exchange Rates with Modified Elman Network)

  • ;박범조
    • 지능정보연구
    • /
    • 제3권1호
    • /
    • pp.47-68
    • /
    • 1997
  • This paper discusses a method of modified Elman network(1990) for nonlinear predictions and its a, pp.ication to forecasting daily exchange rate returns. The method consists of two stages that take advantages of both time domain filter and modified feedback networks. The first stage straightforwardly employs the filtering technique to remove extreme noise. In the second stage neural networks are designed to take the feedback from both hidden-layer units and the deviation of outputs from target values during learning. This combined feedback can be exploited to transfer unconsidered information on errors into the network system and, consequently, would improve predictions. The method a, pp.ars to dominate linear ARMA models and standard dynamic neural networks in one-step-ahead forecasting exchange rate returns.

  • PDF

Control of Flexible Joint Robot Using Direct Adaptive Neural Networks Controller

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Kwi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.29-34
    • /
    • 2001
  • This paper is devoted to investigating direct adaptive neural control of nonlinear systems with uncertain or unknown dynamic models. In the direct adaptive neural networks control area, theoretical issues of the existing backpropagation-based adaptive neural networks control schemes. The major contribution is proposing the variable index control approach, which is of great significance in the control field, and applying it to derive new stable robust adaptive neural network control schemes. This new schemes possess inherent robustness to system model uncertainty, which is not required to satisfy any matching condition. To demonstrate the feasibility of the proposed leaning algorithms and direct adaptive neural networks control schemes, intensive computer simulations were conducted based on the flexible joint robot systems and functions.

  • PDF

유전 알고리듬과 반응표면을 이용한 천음속 익형의 최적설계 (Optimization of Transonic Airfoil Using GA Based on Neural Network and Multiple Regression Model)

  • 김윤식;김종헌;이종수
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2556-2564
    • /
    • 2002
  • The design of airfoil had practiced by repeat tests in its first stage, though an airfoil has as been designed based on simulations according to techniques of computational fluid dynamics. Here, using of traditional optimization is unsuitable because a state of flux is hypersensitive to the shape of airfoil. Therefore the paper optimized the shape of airfoil in transonic region using a genetic algorithm (GA). Response surfaces are based on back propagation neural network (BPN) and regression model. Training data of BPN and regression model were obtained by computational fluid dynamic analysis using CFD-ACE, and each analysis has been designed by design of experiments.

신경회로망을 응용한 현가장치의 폐회로 시스템 규명 (Empirical Closed Loop Modeling of a Suspension System Using Neural Network)

  • Kim, I.Y.;Chong, K.T.;Hong, D.P.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.29-38
    • /
    • 1997
  • A closed-loop system modeling of an active/semiactive suspension system has been accomplished through an artificial neural network. A 7DOF full model as a system's equation of motion has been derived and an output feedback linear quadratic regulator has been designed for control purpose. A training set of a sample data has been obtained through a computer simulation. A 7DOF full model with LQR controller simulated under several road conditions such as sinusoidal bumps and rectangular bumps. A general multilayer perceptron neural network is used for dynamic modeling and target outputs are fedback to the a layer. A backpropagation method is used as a training algorithm. Model validation of new dataset have been shown through computer simulations.

  • PDF

미지의 비선형 시스템 제어를 위한 DNU와 GA알고리즘 적용에 관한 연구 (Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems)

  • ;;조현섭;전정채
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2486-2489
    • /
    • 2002
  • Pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

플랜트구조와 신경망에뮬레이터의 구조 및 학습시간과의 관계 (A study on interrelation between the structure of a Plant and the str neural network emulator and the learning rate)

  • 배창한;이광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.386-389
    • /
    • 1997
  • Error-backpropagation has been used in the bulk of Practical applications for neural networks. While an emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. There is, however, no concrete theoretical results about the structure of a plant and the structure of a multilayered neural network and the learning rate. The paper investigates the relation between structure of a plant and a multilayered network and learning rate. Simulation study shows that the plant signal with a short period and a fast sam time is preferable for learning of the network emulator.

  • PDF

다층 신경회로망을 이용한 DC Servo Motor 제어방법 (A Control Method of DC Servo Motor Using a Multi-Layered Neural Network)

  • 김석우;김준식;유종선;이영준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.855-858
    • /
    • 1995
  • A neural network has very simple construction (input, output and connection weight) and then it can be robusted against some disturbance. In this paper, we proposed a neuro-controller using a Multi-Layered neural network which is combined with PD controller. The proposed neuro-controller is learned by backpropagation learning rule with momentum and neuro-controller adjusts connection weight in neural network to make approximate dynamic model of DC Servo motor. Computer Simulation results show that the proposed neuro-controller's performance is better than that of origianl PD controller.

  • PDF

신경 회로망을 이용한 로보트의 동력학적 시각 서보 제어 (Dynamic Visual Servo Control of Robot Manipulators Using Neural Networks)

  • 박재석;오세영
    • 전자공학회논문지B
    • /
    • 제29B권10호
    • /
    • pp.37-45
    • /
    • 1992
  • For a precise manipulator control in the presence of environmental uncertainties, it has long been recognized that the robot should be controlled in a task-referenced space. In this respect, an effective visual servo control system for robot manipulators based on neural networks is proposed. In the proposed control system, a Backpropagation neural network is used first to learn the mapping relationship between the robot's joint space and the video image space. However, in the real control loop, this network is not used in itself, but its first and second derivatives are used to generate servo commands for the robot. Second, and Adaline neural network is used to identify the approximately linear dynamics of the robot and also to generate the proper joint torque commands. Computer simulation has been performed demonstrating the proposed method's superior performance. Futrhermore, the proposed scheme can be effectively utilized in a robot skill acquisition system where the robot can be taught by watching a human behavioral task.

  • PDF

Chaotic 비선형 동역학 시스템의 Chaotic 현상 분석 시뮬레이터의 개발과 궤환제어에 관한 연구 (A Study on Feedback Control and Development of chaotic Analysis Simulator for Chaotic Nonlinear Dynamic Systems)

  • 김정도;정도영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.407-410
    • /
    • 1996
  • In this Paper, we propose the feedback method having neural network to control the chaotic signals to periodic signals. This controller has very simple structure, it is immune to small parameter variations, the precise access to system parameters is not required and it is possible to follow ones of its inherent periodic orbits or the desired orbits without error, The controller consist of linear feedback gain and neural network. The learning of neural network is achieved by error-backpropagation algorithm. To prove and analyze the proposed method, we construct a software tool using c-language.

  • PDF

신경 회로망을 이용한 적응 제어 시스템의 설계 (Design of an Adaptive Control System using Neural Network)

  • 장태인;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF