• Title/Summary/Keyword: Dynamic Anchor

Search Result 72, Processing Time 0.021 seconds

Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method (Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석)

  • Kim, Youngho;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.895-906
    • /
    • 2014
  • A fundamental study of the dynamically penetrating anchor (DPA - colloquially known as torpedo anchor) embedded into deep seabed was conducted using measurement data and numerical approaches. Numerical simulation of such a structure penetration was often suffered by severe mesh distortion arising from very large soil deformation, complex contact condition and nonlinear soil behavior. In recent years, a Coupled Eulerian-Lagrangian method (CEL) has been used to solve geomechanical boundary value problems involving large deformations. In this study, 3D finite element analyses using the CEL formulation are carried out to simulate the construction process of dynamic anchors. Through comparisons with results of field measurements, the CEL method in the present study is in good agreement with the general trend observed by in-situ measurements and thus, predicts a realistic large deformation movement for the dynamic anchors by free-fall dropping, which the conventional FE method cannot. Additionally, the appropriate parametric studies needed for verifying the characteristic of dynamic anchor are also discussed.

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.

Shear Resistance of CIP Anchors under Dynamic Loading: Reinforced Anchor (선설치앵커의 동적 전단하중에 대한 저항강도: 철근보강 앵커)

  • Park, Yong Myung;Kang, Moon Ki;Roh, Jin Kyung;Ju, Ho Jung;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • In this study, an experimental study was performed to evaluate the shear resistance of cast-in-place(CIP) anchors reinforced with hairpin and stirrup bars under static and dynamic loads. The reinforcement was developed using D6 bars, and the anchors were installed with 20mm diameter and 120mm edge distance. Three tests were conducted for each type of reinforced anchor under static and dynamic shear load with a pulsating frequency of 1 Hz, respectively. It was found that the strength of hairpin-reinforced anchor was affected by the concrete cover and the dynamic tests showed no capacity reduction of anchors compared with static tests. The stirrup-reinforced anchor showed little increase of resistance compared with unreinforced anchor and the resistance under dynamic loading showed nearly same strength by static loading.

The Study on the TV Female Anchor's Image according to the Make Up and Hair Style (메이크업과 헤어스타일 유형에 따른 TV 뉴스 여자 앵커의 인상형성에 관한 연구)

  • Oh, In-Young;Kim, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1636-1647
    • /
    • 2006
  • The purpose of this study was to provide data that can be used to suggest idealistic anchor's image to capture ratings for the news program and to suggest guide for casting and training anchors for the broadcasting stations by examining the idealistic looks and images of TV news anchors by asking the general viewers who watch TV, The research methods was questionnaire survey. The subjects were 839 male and female audiences in theire 20's and 40's who residing in Seoul and Gyeonggi area. The study results are as follows: 1) The factors that decide impression of a female anchor The factors that decide female anchor's impression were 'specialty factor, friendliness factor, elegance factor, dynamic factor, and attractiveness factor'. 2) The difference in formation of impression according to makeup and hair style of a female anchor In case of specialty and friendliness factors scored high when putting on natural makeup, dynamic factors scored high when putting on elegant makeup, and attractiveness factor when putting on natural and romantic makeup. All factor were high when a female anchor had short-cut style and straight hair 3) Formation of anchor's impression from makeup and hair style according to the perceiver's variables (gender and age) Male and female audiences both gave hish score for a female anchor's specialty such as 'confident and reliable' and friendliness such as 'warm and comfortable' when a female anchor puts on natural makeup. They gave high score for attractiveness factor such as' good impression and refined' when putting on romantic makeup and high score for dynamic factor such as 'positive and confident' when putting on elegant makeup. Both male and female audiences gave high score fur all except friendliness factor when a female anchor had short-cut style compared to bobbed hair and high score far specialty factor when a female anchor had straight hair. The audiences both in their 20's and 40's gave high score for specialty and friendliness when a female anchor put on natural makeup while the perceivers at their 20's gave high score for elegance and dynamic factor when a female anchor put on elegant makeup. The audiences both in their 20's and 40's gave high score for all factors when female anchor had short-cut hair.

Dynamic shear strength of unreinforced and Hairpin-reinforced cast-in-place anchors using shaking table tests

  • Kim, Dong Hyun;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.39-58
    • /
    • 2016
  • Since the publication of ACI 318-02, the concrete capacity design (CCD) method has been used to determine the resistance of unreinforced concrete anchors. The regulation of steel-reinforced anchors was proposed in ACI 318-08. Until ACI 318-08, the shear resistance of concrete breakout for an unreinforced anchor during an earthquake was reduced to 75% of the static shear strength, but this reduction has been eliminated since ACI 318-11. In addition, the resistance of a hairpin-reinforced anchor was calculated using only the strength of the steel, and a regulation on the dynamic strength was not given for reinforced anchors. In this study, shaking table tests were performed to evaluate the dynamic shear strength of unreinforced and hairpin-reinforced cast-in-place (CIP) anchors during earthquakes. The anchors used in this study were 30 mm in diameter, with edge distances of 150 mm and embedment depths of 240 mm. The diameter of the hairpin steel was 10 mm. Shaking table tests were carried out on two specimens using the artificial earthquake, based on the United States Nuclear Regulatory Commission (US NRC)'s Regulatory Guide 1.60, and the Northridge earthquake. The experimental results were compared to the current ACI 318 and ETAG 001 design codes.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Shear Resistance of CIP Anchors under Dynamic Loading: Unreinforced Anchor (선설치앵커의 동적 전단하중에 대한 저항강도: 비보강 앵커)

  • Park, Yong Myung;Kang, Moon Ki;Kim, Dong Hyun;Lee, Jong Han;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • The Concrete Capacity Design(CCD) method has been used in the design of anchor since 2001 and Korean design code specify that concrete breakout capacity of CIP anchor under seismic load shall be taken as 75% of static capacity. In this study, an experimental study was performed to evaluate the concrete breakout capacity of unreinforced CIP anchors under dynamic shear force. For the purpose, three static and dynamic shear-loading tests were conducted using 20mm diameter anchors, respectively. The edge distance of 120mm was considered in the tests. In the dynamic tests, 15 cycles pulsating load with 1Hz speed was applied and the magnitude of loading step was increased until concrete breakout failure occurs. From the tests, the concrete breakout capacity under dynamic shear loading showed nearly same capacity by static loading.

A Case Study of Applicability of Machines of Pulse Powered Underreamed Anchors (펄스방전 확공형 앵커용 시공 장비의 적용성 검토)

  • Kang, Kum-Sik;Kim, Jae-Hyung;Cho, Gyu-Yeon;Kim, Tae-Hoon;Kim, Sun-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1100-1106
    • /
    • 2009
  • This study intends to develop a pulse discharge device to strengthen the pushing power by expanding the cavity of the anchor settlement to form a spheric root for the purpose of constructing the economical and stable anchor. and, a series of field test were carried out in order to check applicability of machines of pulse powered underreamed anchors. Through the experiments, the electrical characteristics of the pulse power equipment had been identified it and the dynamic pressure generated from the subsequent change had been measured. Here, the measured dynamic pressure is the cavity expansion pressure to impact on the ground around the anchor settlement. Since this pressure has effects of cavity expansion and bored surface hardening with dynamic hardening effects on the anchor settlement, it is expected that it will largely contribute the increase of pushing power with a strong frictional resistance.

  • PDF

Performance of novel dynamic installed anchors during installation and monotonic pullout

  • Kim, Youngho;Rosher, Lachlan Thomas
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2019
  • This paper examines the results from three-dimensional dynamic finite element analysis undertaken to develop a new dynamically installed anchor (DIA). Several candidate shapes of new DIAs were selected after an investigation into previous researches of existing DIA designs. The performances of selected DIAs during the installation and loading in non-homogeneous clay were investigated through large deformation finite element (LDFE) analyses. Findings were compared to the current anchors in operation (i.e., Torpedo and Omni-Max DIA) to assess the viability of the new designs in the field. Overall, the anchor embedment depths of the novel DIAs lied under the results of OMNI-Max DIA. And also, the tracked anchor trajectory confirmed that, the novel DIAs dove deeper with stiffer travelling angle, compared to the OMNI-Max DIA. These elements are more critical and beneficial especially in a field where the achieved embedment depths are generally low.

Dynamic Shear Strength of Stirrup-reinforced Cast-in Anchors by Seismic Qualification Tests (스터럽 보강 선설치 앵커의 지진모의실험에 의한 동적 전단 저항강도 평가)

  • Kim, Tae Hyung;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • An experimental study was conducted to evaluate the breakout strength of stirrup-reinforced cast-in anchors under dynamic shear loadings. The shear loadings were applied in the manner specified in the ACI 355.2 and ETAG 001 for the seismic qualification tests. Test specimens were fabricated with M36 anchor (edge distance, 180mm) reinforced with D10 stirrups (spacing, 100mm). The specimens reached almost the breakout strength and thereafter fracture of anchor occurred. Additional tests with M42 anchor (edge distance, 160mm) reinforced with D6 bars (spacing, 100mm) were also conducted. The experimental results showed that the dynamic shear strength was not less than the static resistance. Based on the test results, it was shown that ACI 318 and ETAG 001 specifications estimate the breakout strength of stirrup-reinforced anchors conservatively as more reinforcement is provided.