• 제목/요약/키워드: Dye-sensitized solar cells (DSC)

검색결과 50건 처리시간 0.043초

염료감응태양전지를 위한 $TiO_2$ 분말 기공도와 염료 흡착량의 관계 (Relationship between the porosity of the nanostructured $TiO_2$ electrode and Dye Loading for Dye-sensitized Solar Cells)

  • 황성진;정현상;전재승;김형순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSC) show great promise as an inexpensive alternative to conventional p-n junction solar cells. Investigations into the various factors influencing the photovoltaic efficiency have recently been intensified. The conventional absorber electrode in DSSC is composed of compacted or sintered $TiO_2$ nanopowder that carries an anchored organic dye. The absorbance of incident light in the DSC is realized by specifically engineered dye molecules placed on the semiconductor electrode surface ($TiO_2$). The dye absorbs light at wavelengths up to about 920nm, the energy of the exited state of the molecule should be about 1.35eV above the electronic ground state corresponding to the ideal band gap of a single band gap solar cell. The dye molecules ar adhered onto the nanostrutured $TiO_2$ electrode by immersing the sintered electrode into a dye solution, typically 3mM in alcohol, for a long enough period to fully impregnate the electrode. However, the concentrations of the dye is slightly changed due to the evaporation of the alcohol. The dye is more expensive than other materials in DSSC and related to the efficiency of DSSC. Therefore, the concentrations of the dye should be carefully measured. In this study, we investigated to the dye loading on fired $TiO_2$ powder as a function of temperature by the TG-DTA and the dye solution by UV-visible spectroscopy after the impregnation process. The dye loading is related to the porosity of the nanostructured $TiO_2$ electrode.

  • PDF

정전분무법을 이용한 염료감응형 태양전지의 $TiO_2$ 박막 특성에 관한 연구 (A study on the characteristics of $TiO_2$ electrode in dye-sensitized solar cells using electrospray method)

  • 장진주;홍지태;이동길;이경준;손민규;김진경;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1423_1424
    • /
    • 2009
  • Dye sensitized solar cells(DSC) have been very economical and easy method to convert solar energy to electricity. DSC can reach low costs in future outdoor power applications. However, to commercialize the DSC, there are still many shortages to overcome such as a low efficiency in a large size DSC. In this study, DSCs were fabricated by an electrospray coating method for the $TiO_2$ thin film. They were compared with DSCs prepared by conventional coating methods. We conducted an experiment to obtain the optimized parameters of voltage, flow rate, incident angle and distance in the electrospray method. After we manufactured $TiO_2$ film using that way, we could analyze the characteristics of DSC through SEM, UV curve, EIS.

  • PDF

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • 유현준;;김현철;김명준;양윤정;이선희;신현정
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

단위 DSC셀의 직병렬 연결을 통한 소형 배터리 충전특성에 관한 연구 (A study of small size battery charging characteristic by serial-parallel connected DSC module)

  • 홍지태;최진영;서현웅;김미정;심지영;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.192-194
    • /
    • 2006
  • To elucidate possible challenges for outdoor practical use of dye-sensitized solar cells(DSC), compared with conventional Si solar cells. DSC modules still need the larger area than conventional Si solar modules to attain the same rated output because of lower photoelectron-chemical conversion efficiency. However, using batteries backup systems, the measured data shows that DSCs gathered over 12% more electricity than Si solar cells of the same rated output power in same outdoor condition. Moreover, battery charging time of DSC is about 1 hour faster than same rate of Si solar module. In this paper, 12 single DSC cells prepared for 4 serialized DSC cells was connected in 3 row parallel which have same output power rate of Si solar module. This DSC module was practiced generating characteristic experiment over outdoor daylight condition and applied with PV battery charger by using DC-DC converter. The main advantages of DSC module battery charger as compared with conventional Si solar module one are shorter charge time and lower cost.

  • PDF

염료감응형 태양전지에서 효율 향상을 위한 Quantum Dot 재료로서 Ag가 도핑된 ZnO의 발광 특성 연구 (Luminescence Properties of Ag Doped ZnO as Quantum Dot Materials for Improving Efficiency of Dye-sensitized Solar Cell)

  • 김현주;이동윤;송재성
    • 한국전기전자재료학회논문지
    • /
    • 제17권9호
    • /
    • pp.988-993
    • /
    • 2004
  • Luminescence characteristics of Ag-doped ZnO as the quantum dot materials to increasing the efficiency on dye-sensitized solar cells (DSC) have been studied. Ag doped ZnO powder was produced by the self-sustaining combustion process using ultrasonic spraying heating method. Luminescence wavelength region of the ZnO by Ag doping was shifted to longer wavelength. Tn the case of the Ag doped ZnO powder, broad luminescence spectrum centered on 600nm was observed. On the other hand, we compared PL data of RTA treated ZnO:Ag film at various temperatures because the front electrode of solar cell was in need of the sintering process. In XRD and PL data for RTA treated film at the 500$^{\circ}C$ showed good property. And, it was found that the grain size wasn't growing but only optical property was changed. According to the result of XRD, PL, absorption, emission spectrum and DV-X${\alpha}$ used in theoretical calculation, it is considered to be possible to use Ag doped ZnO as quantum dot material for improving DSC efficiency.

염료감응 태양전지에서 전면전극/FTO 사이에 완충층으로서의 PLD로 증착한 $TiO_2$ 박막에 관한 연구 (A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Front Electrode and FTO of Dye-sensitized Solar Cell)

  • 송상우;노지형;이경주;지민우;문병무
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.465-466
    • /
    • 2009
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. $TiO_2$ thin films were deposited on the ITO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD). We manufactured DSC unit cells then I-V and efficiency were tested by solar simulator.

  • PDF

티타늄이 증착된 유리를 사용한 FTO-less 염료감응형 태양전지에 관한 연구 (A Study on FTO-less Dye Sensitized Solar Cell with Ti Deposited Glass)

  • 박송이;서현웅;손민규;김수경;홍나영;송정윤;프라바카르;김희제
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.208-212
    • /
    • 2013
  • Dye-sensitized solar cells (DSCs) have taken much attention due to their low cost and easy fabrication method compare to silicon solar cells. But research on cost effective DSC is prerequisite for commercialization. Fluorine doped tin oxide (FTO) which have been commonly used for electrode substrate as electron collector occupied most percentage of manufacturing cost. Therefore we studied FTO-less DSC using sputtered Ti deposited glass as photoelectrode instead of FTO to reduce manufacturing cost. Ti films sputtered on the glass for different time, 5 to 20 minutes with decreasing sheet resistance as deposition time increases. A light source illuminated to counter electrode in order to overcome opaque Ti films. The efficiency of DSC (Ti20) made Ti sputtered glass for 20 min as photoelectrode was 5.87%. There are no significant difference with conventional cell despite lower manufacturing cost.

$Nb_2O_5$ light scattering layer를 사용한 염료감응형 태양전지 성능 개선 (Improvement of performance of dye-sensitized solar cells using $Nb_2O_5$ light scattering layer)

  • 최석원;손민규;최진호;김수경;김병만;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1503-1504
    • /
    • 2011
  • 염료 감응형 태양전지(Dye-sensitized Solar Cells, DSC)에서 고효율화를 위해 light scattering layer가 반도체 산화물 $TiO_2$와 함께 많이 사용되고 있다. 이것은 light scattering layer에 의해 빛의 이용률을 증가시킴으로써 DSC의 성능을 증대 시킬 수 있기 때문이다. 따라서 본 연구에서는 입자크기가 크고 반사율이 좋은 $Nb_2O_5$를 light scattering layer로 사용하여 $TiO_2$ layer를 통과한 빛을 다시 반사시켜 빛의 이용률을 증대시킴으로써 DSC 성능면에서 light scattering layer를 사용하지 않았을 때보다 전류밀도와 효율을 크게 증가시키고자 하였다. 그 결과 $V_{OC}$는 0.74V, $J_{SC}$는 17.95mA/$cm^2$, FF는 0.63, ${\Box}$는 8.38%로 기존의 DSC 보다 전류밀도가 약 30%, 효율이 약 31% 증가한 좋은 결과를 얻을 수 있었다.

  • PDF

염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구 (A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC)

  • 김희제;김용철;최진영;김호성;이동길;홍지태
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.803-807
    • /
    • 2008
  • A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

염료감응형 태양전지의 대면적화를 위한 최적 구조 연구 (A Study on The Optimum Structure of Dye-sensitized Solar Cell for Upscaling)

  • 서현웅;김미정;홍지태;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1295-1296
    • /
    • 2007
  • A lot of researches about dye-sensitized solar cell (DSC) are recently being conducted. Because DSC has several advantages to pass the limits of silicon solar cells such as a low manufacturing expense, a simple manufacturing process and its transparency. But most researches on DSC are still conducted about the unit cell and laboratory-centered. That is, present researches on DSC are not practical. Therefore, researches about large area cells and modules have to be prerequisites for DSC to have the practicality. Characteristics of large area DSC are so different from those of small area DSC in aspect of fill factor and efficiency. In this study, we made an experiment on finding suitable size of DSC that has the most effective power according to the variation of active area. In detail, the experiment was conducted about the optimum ratio of length to width and we introduced the ratio of active area to non-active area to find the active area which has the best output. Because small DSC doesn‘t have the best output in comparison with total area of cell although the smaller DSC has the better efficiency. As a result, we achieved the optimum ratio of length to width of 8:3 and active area of $8cm^2$ as the optimum size for upscaling DSC.

  • PDF