• Title/Summary/Keyword: Dye-sensitized cells

Search Result 460, Processing Time 0.029 seconds

Properties of Working Electrodes with Polystyrene Beads Addition in Dye Sensitized Solar Cells

  • Noh, Yunyoung;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.380-383
    • /
    • 2015
  • We prepared the $TiO_2$ layer with 0 ~ 4 wt% of polystyrene (PS) beads having a radius of 250 nm to increase the dye adsorption and energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Then, we fabricated DSSCs using $0.45cm^2$ active area. FE-SEM was used to characterize the microstructure consisting of $TiO_2$ layer and PS beads. UV-VIS-NIR was used to determine the optical absorbance of working electrodes (WEs). Solar simulator and potentiostat were used to determine the photovoltaic properties. We observed that pores having a radius of 250 nm were formed with the density of $0.15ea/{\mu}m^2$ in $TiO_2$ layers after conducting the sintering process. The absorbance in visible light regime was found to increase with the increase in the amount of PS beads. The ECE increased from 4.66% to 5.25% when the amount of PS beads was increased from 0 to 4 wt%. This is because the pores of PS beads increased the adsorption of dye. Our results indicate that the ECE of the DSSCs can be enhanced by the addition of an appropriate amount of PS beads into $TiO_2$ layers.

Room temperature-processed TiO2 coated photoelectrodes for dye-sensitized solar cells

  • Kim, Dae-gun;Lee, Kyung-min;Lee, Hyung-bok;Lim, Jong-woo;Park, Jae-hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • The depletion of fossil fuels and the increase in environmental awareness have led to greater interest in renewable energy. In particular, solar cells have attracted attention because they can convert an infinite amount of solar energy into electricity. Dye-sensitize solar cells (DSSCs) are low cost third generation solar cells that can be manufactured using environmentally friendly materials. However, DSSC photoelectrodes are generally produced by screen printing, which requires high temperature heat treatment, and low temperature processes that can be used to produce flexible DSSCs are limited. To overcome these temperature limitations, this study fabricated photoelectrodes using room-temperature aerosol deposition. The resulting DSSCs had an energy conversion efficiency of 4.07 %. This shows that it is possible to produce DSSCs and flexible devices using room-temperature processes.

Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells

  • Jang, Inseok;Song, Kyungho;Park, Jun-Hwan;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2883-2888
    • /
    • 2013
  • To enhance the power conversion efficiency of dye-sensitized solar cell (DSSC), the surface of titanium dioxide ($TiO_2$) photoelectrode was modified by hydroxylation treatment with $NH_4OH$ solution at $70^{\circ}C$ for 6 h. The $NH_4OH$ solutions of various concentrations were used to introduce the hydroxyl groups on $TiO_2$ surface. As the concentration of $NH_4OH$ was increased, the short-circuit current density ($J_{SC}$) value and conversion efficiency of solar cells were increased because the amount of adsorbed dye molecules on $TiO_2$ surface was increased. As a result of the surface modification to introduce hydroxyl groups, the concentration of adsorbed dye on the $TiO_2$ surface could be improved up to 32.61% without the changes of morphology, surface area and pore volume of particles. The morphology, the specific surface area, the pore volume and the chemical states of $TiO_2$ surface were characterized by using FE-SEM, $N_2$ adsorption-desorption isotherms and XPS measurements. The amount of adsorbed dye and the performance of fabricated cells were analyzed by using UV-Vis absorption spectroscopy and solar simulator.

The Characteristic Analysis of the Dye-sensitized Solar Cells as the Change of Incident Angle (광 입사각에 따른 염료감응형 태양전지의 발전특성 분석)

  • Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyoung-Jun;Jang, Jin-Ju;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.124-127
    • /
    • 2008
  • Dye-sensitized solar cells (DSCs) have been proposed as a substitute for overcoming the limitation of Si solar cells because DSC has the various applications using advantages of DSC such as low cost, transparency and flexibility. Although some people point out low efficiency of DSC as the important problem at present, general views say that actually cumulative power is not insufficient as compared with Si solar cell. Therefore, we analyzed the characteristics of both cells according to the change of incident angle in this study. The insensibility about the incident angle has more developable time. Finally, DSC is able to fill a shortage of power caused from low efficiency of DSC for same time by developing during impossible time to develop in Si solar cell. As a result, DSC has 75% and 210% cumulative power of Si solar cell in summer and winter under the standard sunshine duration.

  • PDF

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.

A Study on the Characteristics of Dye Sensitized Solar Cells with Cell Area and Dye Absorption Time (셀 면적 및 흡착시간에 따른 염료감응형 태양전지 특성에 관한 연구)

  • Lee, Don-Kyu;Song, Young-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.595-600
    • /
    • 2012
  • In this paper, it is investigated the characteristics of DSSC(Dye Sensitized Solar Cell) with cell area(0.25, 1, 2.25 $cm^2$) and dye absorption time(12, 24, 36 h). Thus, we obtain the following results by using the EIS, UV-VIS, I-V measurement. When the cell area increases, the efficiency decreases to 21~32 percent because of the increase about 40~$60{\Omega}$ of internal impedance regardless of dye absorption time. When the absorption time increases up to 24 hours, the efficiency increases to over 40 percent cause of the reduction of internal impedance regardless of cell area. When the dye absorption time becomes 36 hours, the internal impedance increases and at the same time, in the range of 600~700 nm, as the optical absorption reduces. Therefore, the efficiency decreases to 19~31 percent. When it is absorbed the dye for 24 hours in the smallest cell area which is 0.25 $cm^2$, the DSSC has the best efficiency (7.11 %).

Dynamic Rapid Synthesis of Bis(2,2'-bipyridine)nitrato Zinc (II) Nitrate Using a Microwave Method and its Application to Dye-Sensitized Solar Cells (DSSC)

  • Kim, Young-Mi;Kim, Su-Jung;Nahm, Kee-Pyung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2923-2928
    • /
    • 2010
  • This study examined the synthesis of the crystal structure of bis(2,2'-bipyridine)nitrato zinc (II) nitrate, $[Zn(bipy)_2(NO_3)]^+NO_3^-$ using a microwave treatment at 300 W and 60 Hz for the application to dye-sensitized solar cells. The simulated complex structure of the complex was optimized with the density functional theory calculations for the UV-vis spectrum of the ground state using Gaussian 03 at the B3LYP/LANL2DZ level. The structure of the acquired complex was expected a penta-coordination with four nitrogen atoms of bipyridine and the oxygen bond of the $NO_3^-$ ion. The reflectance UV-vis absorption spectra exhibited two absorptions (L-L transfers) that were assigned to the transfers from the ligand ($\sigma$, $\pi$) of $NO_3$ to the ligand ($\sigma^*$, $\pi^*$) of pyridine at around 200 - 350 nm, and from the non-bonding orbital (n) of O in $NO_3$ to the p-orbital of pyridine at around 450 - 550 nm, respectively. The photoelectric efficiency was approximately 0.397% in the dye-sensitized solar cells with the nanometer-sized $TiO_2$ at an open-circuit voltage (Voc) of 0.39 V, a short-circuit current density (Jsc) of $1.79\;mA/cm^2$, and an incident light intensity of $100\;mW/cm^2$.

Effective Refractive Index of Dye-Sensitized Solar Cell Using Transmittance and Reflectance Measurements (투과 및 반사율 측정을 이용한 염료감응태양전지의 유효 굴절률 모델링)

  • Kim, Hyeong Seok;Lee, Joocheol;Shin, Myunghun
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 2015
  • Optical modeling and characterization of transparent dye-sensitized solar cells (DSC) are presented to design and estimate DSC devices numerically. In order to model the inhomogeneous active layer of DSC, the porous structure of titanium oxide ($TiO_2$) and dye mixture, we prepared films consisting of layer by layer of the DSC's basic materials sequentially, and characterized the optical parameters of the films with the effective refractive index, which was extracted from the transmittance and reflectance measurements in ultra violet to near infra-red range. By using the effective refractive index, we made the optical model for DSC, and demonstrated that the optical model based on effective refractive index can be used to design and evaluate the performance of transparent-type DSC modules.

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

Quantum Chemical Designing of Efficient Sensitizers for Dye Sensitized Solar Cells

  • Abdullah, Muhammad Imran;Janjua, Muhammad Ramzan Saeed Ashraf;Mahmood, Asif;Ali, Sajid;Ali, Muhammad
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2093-2098
    • /
    • 2013
  • Density functional theory (DFT) was used to determine the ground state geometries of indigo and new design dyes (IM-Dye-1 IM-Dye-2 and IM-Dye-3). The time dependant density functional theory (TDDFT) was used to calculate the excitation energies. All the calculations were performed in both gas and solvent phase. The LUMO energies of all the dyes were above the conduction band of $TiO_2$, while the HOMOs were below the redox couple (except IM-Dye-3). The HOMO-LUMO energy gaps of new design dyes were smaller as compared to indigo. All new design dyes were strongly red shifted as compared to indigo. The improved light harvesting efficiency (LHE) and free energy change of electron injection ${\Delta}G^{inject}$ of new designed sensitizers revealed that these materials would be excellent sensitizers. The broken coplanarity between the benzene near anchoring group having LUMO and the last benzene attached to TPA unit in all new design dyes consequently would hamper the recombination reaction. This theoretical designing will the pave way for experimentalists to synthesize the efficient sensitizers for solar cells.