• Title/Summary/Keyword: Dye-sensitive solar cells

Search Result 8, Processing Time 0.018 seconds

A Study on the Characteristics Improvement of Dye-Sensitive Solar Cells Using Glass Surface Etching (유리 표면 Etching을 이용한 염료감응 태양전지의 특성 개선 연구)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.128-132
    • /
    • 2021
  • In this paper, the surface of electrodes used in solar cells was roughened using wet etching method among surface texturing method, and after surface treatment, dye sensitive solar cell using TiO2 oxide semiconductor was produced. The surface spectroscopic properties of surface treated electrodes were analyzed according to etching time, and by evaluating the electrical properties of TiO2 dye-sensitized solar cells produced according to etching time, the study on improving the efficiency of solar cells according to surface treatment was conducted. As a result, solar cells that etched the electrode surface for 10 minutes could see an improvement of about 27.46[%] over their existing efficiency.

Illumination simulation for selective application and energy saving of solar cells in single-span glass greenhouse (단동식 유리온실에서 태양전지의 선별적 적용과 에너지 절감에 관한 조도 시뮬레이션)

  • Jung, Hai-Young;Lee, Boong-Joo
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1448-1456
    • /
    • 2019
  • In this study, when applying LED light sources within a single-span glass greenhouse for growing crops, the illumination simulation was performed on the ceiling and side of the glass greenhouse to determine the selective placement and effective light transmission of Si series solar cells and dye-sensitive solar cells (DSSC) for supplying LED power source. In addition, energy saving effects of glass greenhouses were analyzed for optimum lighting control when both daylight and LED light sources are considered in glass greenhouses.

Aqueous Electrolytes Based Dye-sensitized Solar Cells using I-/I3- Redox Couple to Achieve ≥ 4% Power Conversion Efficiency

  • Choi, Hyeju;Han, Jinjoo;Kang, Moon-Sung;Song, Kihyung;Ko, Jaejung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1433-1439
    • /
    • 2014
  • We report on the influence of water as an electrolyte on the photovoltaic performances. The photovoltaic performance was shown to be quite sensitive to the substituent on the donor group. An optimized efficiency of 4.41% in the presence of 100% water content using $I^-/I{_3}^-$ redox couple was obtained using the D21L6 organic dye.

A Study on the Characteristics of TiO2-Nb2O5 Semiconductor Oxides Using Dye-Sensitized Solar Cell (TiO2-Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성개선연구)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.538-542
    • /
    • 2019
  • Semiconductor oxides such as $TiO_2$ involved in light conversion efficiency are the main elements of dye-sensitized solar cells (DSSC) and are used to mix different semiconductor oxides to improve efficiency. In this research, characteristics of the dye-sensitive solar cell are studied using semiconductor oxide formed by mixing $TiO_2$ and $Nb_2O_5$. A solar cell is manufactured by adding $Nb_2O_5$ at different ratios in order to analyze electrical characteristics of a mixed semiconductor oxide on light conversion efficiency. With the addition of $Nb_2O_5$, the conductivity was further enhanced than the recombination phenomenon caused by contact with electrolytes, confirming the improve of short-circuit, open voltage, and conversion efficiency of solar cells.

Development of Highly Efficient Dye-Sensitized Solar Cells Using ZnO Post-Treated TiO2 Photoelectrodes (ZnO로 후처리된 TiO2 광전극을 이용한 고효율의 염료감응형 태양전지의 개발)

  • PARK, JUN-YONG;YUN, BYEONG-RO;KIM, TAE-OH
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, an efficient dye-sensitive solar cells (DSSC) was developed after post-treatment of ZnO on $TiO_2$ photoelectrode. The $TiO_2$ electrode with ZnO post treatment was prepared with Titanium isoporopoxide in Zinc Nitrate Hexahydrate aqueous solution by incineration for 30 min at $450^{\circ}C$. The ZnO-post treated $TiO_2$ electrode showed strong dispersion force between particles in relation to the control $TiO_2$, referring high specific surface area and dye-adsorption rate. Proper addition of ZnO enhanced electron mobility and reduced internal resistance and electron recombination. Light conversion efficiency of DSSCs containing the ZnO-posttreated $TiO_2$ electrode increased 35.4% when compared to the DSSCs using $TiO_2$ electrode. It is similar to the DSSCs with $TiCl_4$ post treatment $TiO_2$ electrode. Increasing of light conversion efficiency was due to high specific surface area and dispersion force, and low dye-adsorption rate and electron recombination. Taken together, ZnO may be used as posttreatment of photoelectrode and replaced $TiCl_4$ that has high toxicity and causticity.

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.

Synthesis of Novel Organic Dyes Containing Coumarin Moiety for Solar Cell

  • Choi, Hyun-Bong;Baik, Chul;Kim, Hyun-Jun;Kim, Jeum-Jong;Song, Ki-Hyung;Kang, Sang-Ook;Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1973-1979
    • /
    • 2007
  • Novel organic dyes, JK-34, JK-35 and JK-36 containing bis-dimethylfluorenyl amino coumarin unit are designed and synthesized. Nanocrystalline TiO2 dye-sensitized solar cells were fabricated using these dyes. Under standard global AM 1.5 solar condition, the JK-34 sensitized cell gave a short circuit photocurrent density of 10.05 mA cm?2, open circuit voltage of 0.65 V, and a fill factor of 0.68, corresponding to an overall conversion efficiency η of 4.54%. We found that the power conversion efficiency was shown to be quite sensitive to the structural modifications of bridging thiophene moiety.

Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes

  • Woo, Joo Han;Nam, Da Yeong;Kim, Hyun Jong;Hong, Phan Thi Lam;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.87-94
    • /
    • 2021
  • Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.