• 제목/요약/키워드: Dye decolorization

검색결과 128건 처리시간 0.027초

Purification of Aldose Reductase and Decolorization of Dye by the Enzyme

  • Jang, Mi;Kim, Kyung-Soon
    • Preventive Nutrition and Food Science
    • /
    • 제14권4호
    • /
    • pp.358-361
    • /
    • 2009
  • Aldose reductase was purified to electrophoretic homogeneity from porcine liver. The purified enzyme was a monomer of 36 kDa. The enzyme was strongly inhibited by $Cu^{2+}\;and\;Mg^{2+}$ ions. Incubation of the enzyme with pyridoxal 5'-phosphate led to complete inhibition of enzymatic activity, suggesting that lysine residue is involved at or near the active site of the enzyme. The enzyme exhibited a broad substrate specificity. Furthermore, the enzyme was capable of decolorizing Alizarin, an anthraquinone dye.

키틴의 염료 흡착에 의한 염액의 색소제거에 관한 연구(제1보) (Decoloration in Dyebath by Dye Absorption of Chitin(Part I))

  • 유혜자;이혜자;이전숙
    • 한국의류학회지
    • /
    • 제24권3호
    • /
    • pp.385-392
    • /
    • 2000
  • The adsorption ability of dyes on chitin, a natural polymer was investigated for decolorization of dye wastewater. Chitin was manufactured in lab by decalcification in dilute aqueous HCI solution and deproteination in dilute aqueous NaOH solution with shrimp shells. Absorbance of residue solution of dyebaths after dye adsorptions of chitin were measured in varieties of dye concentration and dipping periods. Four kinds of dyestuffs were used, C.I.Acid Blue 29. C.I.Direct Blue 6, C.I.Reactive Orange 12 and C.I.Basic Red 18. When chtin 1g was dipped in 0.05% of dyebath with stirring, maximum adsorption ratio of each kind of dyes was exhibited as 91.6% for C.I.Acid Blue 29, 95% for C.I.Direct Blue 6, 58.2% for C.I.Reactive Orange 13 and 75.8% for C.I.Basic Red 19. It shows that chitin has better adsorption abilities of ionic dyes of acid, direct and basic dye than non-ionic reactive dye. And chitin has better adsorption abilities of anionic acid direct dyes than cationic basic dye because of the presence of nitrogen atoms. All kinds of dyestuffs used showed speedy absorption effects by chitin, so chitin can absorb much amount of dyes in 5 mimutes reach to equilibrium of adsorption in 2 hours after dipping. Basic dye was absorbed the most speedily in 5 minutes, although maximum adsorption ratio is not high. That reason can be thought that chitin surface is essentially negatively charged due to polar funtional groups.

  • PDF

The Effects of Wood Rotting Fungi and Laccase on Destaining of Dyes and KP Bleaching Effluen

  • Cho, Nam-Seok;Park, J.M.;Choi, T.H.;Matuszewska, A.;Jaszek, M.;Grzywnowicz, K.;Malarczyk, E.;Trojanowski, K.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.72-79
    • /
    • 1999
  • The ability of several wood rotting fungi for decolorization of two anthracene derivatives, Carminic acid (CA) and Remazol brilliant blue R (RBBR), and hardwood KP bleaching liquor (BL) as well as laccase activities in these fungi were studied. The enzyme activity appeared exclusively in fungi destaining RBBR and CA, but in the case of BL, such relationship was not observed. The laccase enzyme was released into the decolorization media and its inducible (but not constitutive) forms shown destaining activity. The purified inducible forms of Kuehneromyces mutabilis and Pleurotus ostreatus laccase destained CA. Thus the possible differentiation between specificity of particular LAC forms was confirmed. In addition the nitrogen starvation induced both laccase and CA destaining activities, but the increase was higher for decolorization of CA than LAC activity. Probably LAC would be only partly responsible for decolorization of this dye. This results suggested that purified LACs decolorize CA, however its destaining activities were considerably lower than the activities on syringaldazine.

  • PDF

Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization

  • Lim, Seon-Hwa;Lee, Yun-Hae;Kang, Hee-Wan
    • Mycobiology
    • /
    • 제41권4호
    • /
    • pp.214-220
    • /
    • 2013
  • This study was conducted in order to perform efficient extraction of lignocellulolytic enzymes amylase (EC 3.2.1.1), cellulase (EC 3.2.1.4), laccase (EC 1.10.3.2), and xylanase (EC 3.2.1.8) from spent mushroom compost (SMC) of Pleurotus ostreatus, P. eryngii, and P. cornucopiae. Optimal enzyme recovery was achieved when SMCs were extracted with 50 mM sodium citrate (pH 4.5) buffer at $4^{\circ}C$ for 2 hr. Amylase, cellulase, and xylanase activities showed high values in extracts from P. ostreatus SMC, with 2.97 U/g, 1.67 U/g, and 91.56 U/g, respectively, whereas laccase activity and filter paper degradation ability were highest in extracts from P. eryngii SMC, with values of 9.01 U/g and 0.21 U/g, respectively. Enzymatic activities varied according to the SMCs released from different mushroom farms. The synthetic dyes remazol brilliant blue R and Congo red were decolorized completely by the SMC extract of P. eryngii within 120 min, and the decolorization ability of the extract was comparable to that of 0.3 U of commercial laccase. In addition, laccase activity of the SMC extract from P. eryngii was compared to that of commercial enzymes or its industrial application in decolorization.

목재 부후균의 리그닌 분해효소 활성과 염료 화합물의 탈색 (Production of Lignin Degrading Enzymes and Decolorization of Various Dye Compounds by Wood-Rot Fungi)

  • 장태원;전상철;안태석;김규중
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.34-39
    • /
    • 2006
  • 목재부후균은 리그닌 분해효소로 lignin peroxidase (LIP), Mn-peroxidase (MNP) 및 laccase를 생성하는데 균류에 따라 위의 효소중 하나 혹은 둘 이상의 효소를 분비하거나 전혀 생성하지 않는 균도 있다. 본 실험은 이러한 목재 부후균의 효소생성 양상과 몇 종의 염료화합물 탈색과의 상관관계를 조사하고자 하였다. 조사한 23종 36균주 중 MNP 생성균은 30균주였으며 LIP 혹은 laccase 생성균은 각각 11균주와 12균주였다. 또한 같은 종에서도 효소활성은 다양한 양상을 보여 주었다. 리그닌 분해효소 활성과 비교하여 염료 탈색 정도는 세 효소가 모두 분비되는 백색 부후균의 경우 염료 탈색율이 상대적으로 우수하였고 균주에 따라 차이가 있으나 MNP 활성만을 갖는 균주의 경우, poly R-478 polymeric dye 및 anthron-type dye 인 remazol brilliant blue R염료는 효소 활성도와 다소 유연관계를 보였으며 methylene blue, bromophenol blue및 congo red 염료는 위의 효소들과는 직접적인 관련이 없는 것으로 판단되었으며, 오히려 균사의 생장과 비례하여 탈색율을 나타냈다. LIP, MNP 및 laccase 효소활성이 거의 검출되지 않은 갈색 부후균에서는 bromophenol blue를 제외하고는 염료의 탈색이 10%미만 혹은 전혀 탈색이 되지 앓았다.

Biotransformation of Reactive Red 141 by Paenibacillus terrigena KKW2-005 and Examination of Product Toxicity

  • Sompark, Chalermwoot;Singkhonrat, Jirada;Sakkayawong, Niramol
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.967-977
    • /
    • 2021
  • A total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as Paenibacillus terrigena KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.0 and a broad temperature range of 30-40℃. The biotransformation products were analyzed by using UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy. Gas chromatography-mass spectroscopy analysis revealed four metabolites generated from the reductive biodegradation, namely sodium 3-diazenylnaphthalene-1,5-disulfonate (I), sodium naphthalene-2-sufonate (II), 4-chloro-1,3,5-triazin-2-amine (III) and N1-(1,3,5-triazin-2-yl) benzene-1,4-diamine (IV). Decolorization intermediates reduced phytotoxicity as compared with the untreated dye. However, they had phytotoxicity when compared with control, probably due to naphthalene and triazine derivatives. Moreover, genotoxicity testing by high annealing temperature-random amplified polymorphic DNA technique exhibited different DNA polymorphism bands in seedlings exposed to the metabolites. They compared to the bands found in seedlings subjected to the untreated dye or distilled water. The data from this study provide evidence that the biodegradation of Reactive Red 141 by P. terrigena KKW2-005 was genotoxic to the DNA seedlings.

전기분해와 UV 조사에 의한 수중 Rhodamine B의 제거(II) (Removal of Rhodamine B in Water by Ultraviolet Radiation Combined with Electrolysis(II))

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.667-674
    • /
    • 2009
  • This study has carried out to evaluate the effect of NaCI as electrolyte of single (electrolysis and UV process) and complex (electrolysis/UV) processes for the purpose of removal and mineralization of Rhodamine B (RhB) dye in water. It also evaluated the synergetic effect on the combination of electrolysis and UV process. The experimental results showed that RhB removal of UV process was decreased with increase of NaCl, while RhB removal of electrolysis and electrolysis/UV process was increased with increase of NaCI. The decolorization rate of the RhB solution in every process was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. Absorption spectra of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the bulk solution: concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the breakup of the chromophores. It was observed that RhB removal in electrolysis/UV process is similar to the sum of the UV and electrolysis. However, it was found that the COD of RhB could be degraded more efficiently by the electrolysis/UV process than the sum of the two individual process. A synergetic effect was demonstrated in electrolysis/UV process.