• Title/Summary/Keyword: Dust particles

Search Result 496, Processing Time 0.032 seconds

Size Distributions of Atmospheric Particles in Cheonan, Korea

  • Oh, Se-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.45-48
    • /
    • 2006
  • Mass size distributions of atmospheric particles in Cheonan were determined using a high volume air sampler equipped with a 5-stage cascade impactor. Bimodal distributions that are typical for urban atmospheric particles were obtained. A MMD of the fine particle mode was $0.47{\pm}0.05{\mu}m$ with a GSD of $2.72{\pm}0.21$, and those of the coarse particles were $5.15{\pm}0.18{\mu}m\;and\;2.09{\pm}0.09$, respectively. The annual average concentrations of TSP, PM10, PM2.5, and PM1 were 74.1, 67.5, 54.2, and $42.3{\mu}g/m^3$, respectively. Although the daily PM10 concentrations were under the current National Standard, the daily PM2.5 concentrations frequently exceeded the US Standard even in non asian dust periods. The fractions of PM 10, PM2.5, and PM1 in TSP were $0.905{\pm}0.013,\;0.723{\pm}0.022,\;and\;0.572{\pm}0.029$, respectively, and fine mode particles occupied $57{\sim}72%$ of the total particle mass. The results indicate that fine particles were at the concerning level, and should be the target pollutant for the regional air quality strategy in Cheonan.

Size-segregated Sources of Aerosol Estimated by Factor Analysis-For the Measurement using Drum Impactor at Gosan, Jeju Island in May 2002 (인자분석을 통한 대기 입자상 물질의 입경별 발생원 추정-Drum impactor를 이용한 2002년 5월 제주도 고산지역 측정을 중심으로)

  • Han, J.S.;Moon, K.J.;Kong, B.J.;Ryu, S.Y.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.685-695
    • /
    • 2004
  • Size-segregated measurements of aerosol composition are used to estimate the transport of natural and anthropogenic aerosols at Gosan site during May 2002. The results of measurement show that not only soil dust but also anthropogenic aerosols, including sulfur and enriched trace metals such as Pb, Zn, Cu, are transported to Gosan. This study combines the size- and time-resolved aerosol composition measurements with factor analysis in order to identify some source materials. As a result, coarse particles (2.5${\mu}m$~12${\mu}m$) are influenced by soil, sea-salt, coal, coal combustion, and nonferrous sources. But fine particles have different sources. The fine particles, which the diameter is from 0.56${\mu}m$ to 2.5${\mu}m$, are more affected by road dust, oil combustion, industry. municipal incineration, and ferrous metal sources. The very fine particles, from 0.09${\mu}m$ to 0.56${\mu}m$, mainly supplied by biomass burning, oil combustion, nonferrous and ferrous metal sources.

Comparison of Mutagenic Activities of Various Ultra-Fine Particles

  • Park, Chang Gyun;Cho, Hyun Ki;Shin, Han Jae;Park, Ki Hong;Lim, Heung Bin
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.163-172
    • /
    • 2018
  • Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.

Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)

  • Ljunggren, Stefan A.;Karlsson, Helen;Stahlbom, Bengt;Krapi, Blerim;Fornander, Louise;Karlsson, Lovisa E.;Bergstrom, Bernt;Nordenberg, Eva;Ervik, Torunn K.;Graff, Pal
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Background: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. Methods: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. Results: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. Conclusion: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

Explosion Properties of Nano and Micro-sized Aluminium Particles (나노 및 마이크로 입자 알루미늄의 폭발 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.20-25
    • /
    • 2014
  • Explosion characteristics of micro-sized aluminum dusts had been studied by many researchers, but the research of nano-sized aluminum dusts were very insufficient. In this study, an experimental investigation was carried out on the influences of nano and micro-sized aluminum dusts (70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) on dust explosion properties of aluminum particles by using 20 L explosion apparatus. With decreasing of particle size in suspended aluminum dusts, the LEC (lower explosion concentration) of nano-sized aluminum is lower than that of micro-sized aluminum. The particle size change of nano-sized aluminum dusts seems no obvious explosion differences than that of micro-sized aluminum dusts. From the observation of nano-sized aluminum particles by TEM (Transmission Electron Microscopy), it is estimated that increase of particles aggregation may have effects on the explosion characteristics of aluminum nanopowders.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.

Dust-scattered FUV halo around Spica

  • Choi, Yeon-Ju;Min, Kyoung-Wook;Park, Jae-Woo;Lim, Tae-Ho;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.73.2-73.2
    • /
    • 2012
  • The far ultraviolet (FUV) wavelength (900-1750A) range includes a wealth of important astrophysical information related to the cooling of hot gas, fluorescent emission from H2 molecules, and starlight scattered off dust particles. Among these, we would like to focus on the scattered emission of the central star by dust with the example of the FUV halo surrounding ${\alpha}$ Vir (Spica). While scattering properties of dust have been studied with the GALEX data, the improved dataset of STSAT-1 revealed many detailed structures of this interesting region. For example, the FUV continuum map obtained from the STSAT-1 observations shows enhanced emission in the southern part of the Spica halo region, where the dust level is also high. In fact, the FUV continuum intensity is seen to have a good correlation with the IRAS 100${\mu}m$ emission data. It is also seen that the scattered spectrum is softer than the original one emitted by the central star, which is attributed to the increase in the dust-scattering albedo with wavelength. We have developed a Monte Carlo code that simulates dust scattering of light including multiple encounters. The code is applied to the present Spica halo region to obtain the scattering properties such as the albedo and the phase function asymmetry factor.

  • PDF

Hazard Evaluation of Minimum Ignition Energy by Electrostatic Voltage in Suspended Dust Particles (부유 분진의 정전압에 의한 최소착화에너지 위험성평가)

  • Han, Oue-Sup
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.359-365
    • /
    • 2021
  • We investigated experimentally the ignition characteristic of dust and the hazard evaluating for electrostatic discharge. The ignition energy experiments were performed on sample dusts such as PE(HD), PE(LD), PMMA using the MIKE-3 apparatus. The formation of flame during the ignition of PE(HD) dust clouds occurred after the delay time of about 8 ms, and the flame kernels were not observed in center of ignition occurrence area. The voltage increased with increasing the number of dust dispersions and the increase rate of measured voltage with dust concentration was the highest in the order of PMMA, PE(LD) and PE(HD). For the effect of dispersion condition on the voltage in PE(HD) dust, the results were obtained that the voltage increased as the number of dispersions increased and as the concentration increased under the same dispersion number. The safety voltages to prevent fire and explosions by electrostatic ignition were estimated that PE(HD), PE(LD)-1, PE(LD)-2, and PMMA were 2.58, 44.72, 25.82, and 8.16 kV, respectively. We proposed the method for estimating the minimum ignition energy by using the measured voltage data for efficient investigation of electrostatic ignition hazard.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

The Extraction of Manganese from the Medium-Low Carbon Ferromanganese Dust with Nitric Acid (질산에 의한 중.저탄소페로망간제조분진에 함유된 망간의 침출)

  • 이계승;한기천;송영준;신강호;조동성
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • Extraction of manganese was investigated with nitric acid from the dust which was generated in the AOD process producing a medium-low carbon ferromanganese from a high carbon ferromanganese. Content of manganese oxide in the dust was about 90%, and phase of it was confirmed as $Mn_3O_4$, The $Mn_3O_4$ particles was agglomerated as spherical shape, and had a lot of pore and crack inside. Maximum recovery of Mn from the sample in the leaching step was about 67% and residue was the amorphous $MnO_2$. The extraction of Mn increased with increasing temperature, but decreased in proportion to concentration of nitric acid. The extraction rate was in good agreement with the pore diffusion model.

  • PDF