• Title/Summary/Keyword: Dust concentration

Search Result 784, Processing Time 0.027 seconds

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea (시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구)

  • Lee, Jihyun;Jeong, Hyeryeong;Choi, Jin-Young;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • Stormwater runoff is known as a major non-point water pollution source that transports heavy metals, which have accumulated in road surface, to stream and coastal area. Dissolved and particulate metals in stormwater runoffs have been investigated to understand the outflow characteristics of heavy metals during rainfall events and to identify their pollution sources. The concentration of dissolved Co and Ni decreased after the outflow with high concentrations at the beginning of the rainfall, and other metals showed different characteristics depending on the rainfall and rate of discharge. Particulate metals showed a similar trend with the temporal variation of suspended solids concentration in stormwater runoffs. The results of geo-accumulation index (Igeo) indicated that the stormwater runoffs from industrial region were very highly polluted with Cu, Zn and Cd. As a result of comparing the metal concentrations of <125 ㎛ for road dust near the study area, Cu, Zn and Cd were originated from inside of metal manufacturing facilities rather than traffic activities at road surface and these metals accumulated on the surface area of facilities were transported to the water environments during stormwater event. The average discharged amounts of heavy metals for one rainfall event were Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g, indicating that metal runoff loads in the stormwater runoffs are closely related to surrounding industry types.

Measuring the Environment of Pig Houses (돈사의 환경계측에 관한 연구)

  • 최규홍;손재룡;이강진;최동수;최용삼;남상일
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.155-164
    • /
    • 2001
  • Environmental factors such as $NH_3,\;H_2S,\;CO_2$, dust, temperature, and humidity in the animal house are a potential health hazard to humans and animals. Until now, most of measurement methods can only provide periodic results with low accuracy. A data acquisition system which can measure continuously and simultaneously $NH_3,\;H_2S,\;CO_2$, temperature, and humidity was developed and installed in two pig houses. Daily changes of environment for the pig-houses were investigated by the data acquisition system. In order to evaluate NH$_3$sensor, gas samples were obtained and NH$_3$concentrations were measured at nine positions; combinations of three positions(inlet, middle, and outlet) and three heights(0 cm, 40 cm, 150 cm). Ammonia concentration of 14.0 ~37.1 ppm for slurry pig-house is higher than that of 8.4~29.7 ppm for scraper pig-house, and there were no statistical differences among the positions. However, the concentration of $NH_3$at 150 cm was higher than thats of 0 cm and 40 cm.

  • PDF

The Behaviour of Dust Concentrations During Sand Storm in Seoul Area (황사기간 중 PM2.5, PM10, TSP 농도 특성에 관한 연구)

  • Kim, Min-Young;Kim, Kwang-Rae;Lee, Min-Hwan;Cho, Seog-Ju
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • The characteristics of particles were evaluated through the measurement data of PM$_{2.5}$, PM$_{10}$ and TSP instruments located in air quality monitoring stations installed and operated by Seoul Metropolitan city. The data of particulate mass on the filter was collected bv a high volume air sampler during the sand storm period. The number of days of sand storm in Seoul showed a different pattern from 1990 to November 2002, We can see a trend of increased occurrence and duration of sand storms. The ratio of PM$_{10}$ to TSP was shown as 52.9% and 59.4% during the sand storm period in 2000 and 2001. respectively. It was indicated that the particles larger than 10${\mu}$m increased by approximately 10% in sand storm periods compared to no sand storm period. While PM$_{10}$ size fraction reached 71.4% in 2002, the contribution of sand storm to total particulate concentration was estimated to be 11.9% for PM$_{2.5}$, 23.1% for PM$_{10}$, 19% for TSP in 2002, respectively and sand storms highly correlated with annual total particulate concentration.

Development and Evaluation of Artificial Lightweight Soil Using Bottom Ash (바텀애시를 활용한 인공경량토양의 개발 및 성능 평가)

  • Kim, Chul-Min;Kim, Min-Woo;Cho, Gun-Young;Choi, Na-Rae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.252-258
    • /
    • 2018
  • A larger energy consumption and concentration of population induced green house gas glowing and heat island effect in the urban space. Roof green system was a effect method to reduce green house gas and heat concentration in the city. Therefore, construction of this system was increasing. Most of lightweight soil used in roof green system was perlite, but this caused dust and skin disease. So it needed to develop another new lightweight soli for roof green system. Meanwhile, a thermoelectric power plant generated bottom ash as a by-product. According to previous research, bottom ash could be used for artificial lightweight soil with 60 wt% of mixing rate. But this study was proceed to develop a artificial lightweight soil using bottom ash with higher mixing rate by 65 wt% and different organic ingredients. First, physical and chemical properties of bottom ash was investigated. Then test according to landscaping design standard was proceeded for various artificial lightweight soil mix types using bottom ash, bark, compost and coco peat. As a result, the artificial lightweight soil with 65% of bottom ash, 30% of bark and 5% of compost was suitable for low and middle range of soil standard.

Human Risk Assessment of Soil Contaminated with Heavy Metal by Waste Reclaimed in Railway Maintenance Site (철도정비부지 내 매립된 폐기물에 의해 중금속으로 오염된 토양의 인체위해성 평가)

  • Braatz, Hatsue Minato;Jung, Minjung;Moon, Seheum;Park, Jinkyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.63-74
    • /
    • 2019
  • This study carried out a human risk assessment of Cu, Pb, Zn and Ni contained in soil contaminated by improperly buried heavy metal wastes in railway sites. The purpose of the human risk assessment is to derive the need for soil remediation and factors that should be considered during soil remediation. Risk assessment was performed in accordance with the Environment Ministry's Risk Assessment Guidelines. The results of the human risk assessment of contaminated heavy metal soil contaminated by improperly buried waste in the railway site were presented after the process of determining exposure concentration, calculating exposure, and determining carcinogenic hazards. The heavy metal content of soil is 621.3 Cu mg/kg, 2,824.5 Pb mg/kg, 1,559.1 Zn mg/kg and 45 Ni mg/kg, which is the exposure concentration of the target contaminant. The results of human exposure according to exposure pathways were high in the order of soil outdoor dust >soil ingestion >soil contact, and Pb >Zn >Cu >Ni were higher in order of contaminant. The carcinogenic and noncarcinogenic risks of soil contaminated with heavy metal waste were higher than the allowable carcinogenic risks (TCR> $10^{-6}$) and the risk index (Hi < 1.0) suggested by USEPA. Therefore, the site needs to be remediated.

An Analysis of Indoor Air Quality and Risk Assessment for One-room Housing around the University in the Post-Corona Era (포스트 코로나 시대의 대학교 주변 원룸형 주택에 대한 실내 공기질 분석 및 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.3
    • /
    • pp.23-30
    • /
    • 2022
  • In this study, in order to grasp the current situation of indoor environmental pollution and indoor ventilation in one-room around the university in the post-corona era, we analyzed the experimental data and conducted a questionnaire survey on university students. By analyzing the content, the effects of formaldehyde, dust and other pollution on the human body, which are usually not easily detectable, are digitized and more easily taken into account. Among the experimental results, the concentration of VOC and HCHO, gas pollutants among indoor pollutants, exceeded the recommended criteria of the Ministry of Environment in most studio apartments. Overall, the average CO2 concentration was lower than the Ministry of Environment's maintenance standard (1000ppm), but it was relatively high in summer and winter, and it is believed to be caused by cooling and heating in an enclosed space. The levels of PM2.5 and PM10, particulate pollutants, increased in November and December, and it is believed that ventilation defects due to degradation in external temperature. There was no clear difference between the two types, and there was a very high correlation between PM2.5 and PM10, HCHO and VOC. It was found that temperature was closely correlated with all sources except CO2, and humidity was closely correlated with all sources except PM2.5 and PM10. Health risk assessment was conducted for formaldehyde. The average ECR of studio R2 in May was 3.91E-4, and the ECR figure in September was 3.65E-4, which was very high compared to other residential spaces. The R2 level was calculated as 4 people per 10,000 people in the lifetime risk of cancer of residents, exceeding the allowable risk. R8 also showed higher ECR results than other spaces after R2, especially in October, 2.01E-4, six times higher than R7 measured in October, and 1.87E-4 in July, four times higher than R9.

Characteristics of Fine Particulate Matter (PM2.5) in the Atmosphere of Saemangum Reclaimed Land Area (새만금간척지 지역 대기 중 초미세먼지 (PM2.5) 오염 특성 평가)

  • Song, Ji-Han;Kim, Jeong-Soo;Hong, Sung-Chang;Kim, Jin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • To understand the distribution characteristics of PM2.5 concentration in the Saemangeum Reclamation Area and nearby areas, three points of the background area, the occurrence area, and the affected area were selected and samples were collected for each season. The chemical composition was determined. As a result of analyzing the chemical composition contained in PM2.5, NO3- (7.2 ㎍/m3), SO42- (4.3 ㎍/m3), NH4+ (4.3 ㎍/m3), OC (2.5 ㎍/m3), Si (1.3 ㎍/m3) m3) and EC (0.5 ㎍/m3) seemed to be the main components, and NO3-, SO42-, NH4+, which are components that form secondary particles, occupied a large proportion. The composition ratio of PM2.5 was investigated in the order of ion component (56.8%) > Unknown (27.4%) > carbon component (11.8%) > heavy metal component (4.0%). During the PM2.5 high concentration case days, the ionic component accounted for 90.7% during atmospheric stagnation cases, whereas the chemical composition ratio was in the order of ionic component (51.7%) > heavy metal component (41.5%) > carbon component (6.8%) during yellow dust cases. It was found that the characteristic of PM2.5 in the Saemangeum reclaimed land and surrounding areas is mainly influenced by outside (domestic and overseas) throughout the year. Ion components accounted for the largest portion of PM2.5 components in this area, but there were few sources of SOx and NOx emission in the Seamangeum area, which are precursors for secondary particle formation. Therefore, it is judged that most of these are generated and influenced as a secondary reaction in the atmosphere from the outside.

PM10 β-ray attenuation samplers (β-ray absorption method) equivalence evaluation and comparatively observed study (PM10 연속자동측정기(β-ray) 등가성평가 및 비교관측 연구)

  • WonSeok Jung;Hee-Jung Ko;Wonick Seo;Jiyoung Jeong;Sang Min Oh;Kyung-On Boo
    • Particle and aerosol research
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The Asian dust observation network operates β-ray attenuation samplers to measure PM10 concentrations. In addition, equivalence evaluation and accuracy inspection(Precision Tests) are conducted every year for the reliability of data. β-ray attenuation samplers(16 units) were comparatively observed from May to June 2020 and from July to December 2021. During the observation period, the average daily temperature was the lowest at 6.4℃ in December and the highest at 27.3℃ in August. The average daily humidity ranged from 60% to 100%, but the average daily humidity was over 75% from July to September. The minimum value of the PM10 Gravimetric method was 5.0 ㎍/m3, the maximum value was 53.4 ㎍/m3, and the average value was 17.8 ㎍/m3. The equivalence evaluation results of the PM10 Gravimetric method and β-ray attenuation samplers satisfied the criteria (slope: 1±0.1, intercept: 0±0.5). A relative error analysis between the PM10 Gravimetric method and β-ray attenuation samplers equipment showed that the relative error increased when the concentration was low and the temperature and humidity were high. In addition, in the β-ray attenuation samplers 5-minute interval observation data in May 2020, a relatively large Standard devication was shown as an average maximum ±23.4 ㎍/m3 and a minimum ±15.2 ㎍/m3. At standard deviations of 10% and 90%, equipment with high variability (deviation) was measured at 6 ㎍/m3and 61 ㎍/m3, and equipment with low variability was measured at 12 ㎍/m3 and 47 ㎍/m3. It was confirmed that concentration differences occurred due to differences in variability for each equipment.

Toxicity of Organophosphorus Flame Retardants (OPFRs) and Their Mixtures in Aliivibrio fischeri and Human Hepatocyte HepG2 (인체 간세포주 HepG2 및 발광박테리아를 활용한 유기인계 난연제와 그 혼합물의 독성 스크리닝)

  • Sunmi Kim;Kyounghee Kang;Jiyun Kim;Minju Na;Jiwon Choi
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • Background: Organophosphorus flame retardants (OPFRs) are a group of chemical substances used in building materials and plastic products to suppress or mitigate the combustion of materials. Although OPFRs are generally used in mixed form, information on their mixture toxicity is quite scarce. Objectives: This study aims to elucidate the toxicity and determine the types of interaction (e.g., synergistic, additive, and antagonistic effect) of OPFRs mixtures. Methods: Nine organophosphorus flame retardants, including TEHP (tris(2-ethylhexyl) phosphate) and TDCPP (tris(1,3-dichloro-2-propyl) phosphate), were selected based on indoor dust measurement data in South Korea. Nine OPFRs were exposed to the luminescent bacteria Aliivibrio fischeri for 30 minutes and the human hepatocyte cell line HepG2 for 48 hours. Chemicals with significant toxicity were only used for mixture toxicity tests in HepG2. In addition, the observed ECx values were compared with the predicted toxicity values in the CA (concentration addition) prediction model, and the MDR (model deviation ratio) was calculated to determine the type of interaction. Results: Only four chemicals showed significant toxicity in the luminescent bacteria assays. However, EC50 values were derived for seven out of nine OPFRs in the HepG2 assays. In the HepG2 assays, the highest to lowest EC50 were in the order of the molecular weight of the target chemicals. In the further mixture tests, most binary mixtures show additive interactions except for the two combinations that have TPhP (triphenyl phosphate), i.e., TPhP and TDCPP, and TPhP and TBOEP (tris(2-butoxyethyl) phosphate). Conclusions: Our data shows OPFR mixtures usually have additivity; however, more research is needed to find out the reason for the synergistic effect of TPhP. Also, the mixture experimental dataset can be used as a training and validation set for developing the mixture toxicity prediction model as a further step.