• Title/Summary/Keyword: Duralumin

Search Result 31, Processing Time 0.027 seconds

A Study on the Characteristics of Cutting for A16061-T6 (A16061-T6재의 절삭가공 특성에 관한 연구)

  • 강상도;채왕석;김경우;김우순;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.202-208
    • /
    • 2003
  • This study carried out a cutting experiment on Duralumin A16061-76, which is light but strong and highly anticorrosive, so recently popular as a lightweight material, by changing cutting conditions and alternating 4 insert tips, and examined the effect of each insert tip on cutting force at certain cutting conditions, the measurements of the coarseness of processed surfaces roughness, and the chip workability. The 1311owing conclusions were drawn from the results. Cutting force for cutting tool is when insert tips were alternated at each cutting condition, the cutting force of cutting tools was highest then CBN tools were use(1 next by Ceramic tools, Cermet tools, and WC tools. Therefore, WC tools are considered most suitable for cutting Duralumin A16061-T6. Surface roughness as for the coarseness of surfaces according to insert tips applied to Duralumin A16061-T6 under the cutting condition of depth of cut below 1mm, feed rate below 0.24mm/rev and cutting speed over 100m/min the coarseness of material surface roghness appeared to be finest when WC tools were used, next by Ceramic tools, Cermet tools, and CBN tools.

  • PDF

Study on Optimized Machining of Duralumin using AFC (AFC를 이용한 두랄루민의 최적화 가공에 관한 연구)

  • Kang, Min-Seog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Studies on the optimizations of machining processes use two different methods. The first is feed control in real-time by spindle load in a machine tool. The second is feed scheduling in NC code control by material removal rate using a CAD/CAM system. Each approach possesses its respective merits and issues compared to the other. That is, each method can be complementary to the other. The purpose of the study is to improve the productivity of the bulkhead, an aircraft Duralumin structure. In this paper, acceleration or deceleration of cutting tool by spindle load data is achieved using adaptive feed control macro programming in a machine tool.

The Study on the Cutting Behavior of Super Duralumin(A2024-T3) (초듀랄류민(A2024-T3)의 절삭거동에 관한 연구)

  • Jun, Tae-Ok;Park, Heung-Sik;Ye, Guoo-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.147-153
    • /
    • 1992
  • This study was undertaken to investigate the cutting behaviour of super duralumin (A2024-T3) with sintered carbide tool(P20). The cutting test was carried out under different conditions such as cutting speed, cutting depth and rake angle, etc. The specific cutting force Kc and Kt of vertical and radial forces decreases as cutting speed increases, especially the decrease rate of Kt becomes larger than of Kc as cutting speed increases. Kc and Kt in small cutting depth are much affected by work-hardening of surface layer. The chip width and shear angle become layer as cutting depth increases, especially chip width at feed of 0.1mm almost approaches cutting width. Relation between the friction coefficient of chip side and tool rake angle side can make the modelization studying the built-up edge size. The shear angle model equation of super duralumin generally agree with theory of Ernst-Merchant.

  • PDF

Super Duralumin의 가공조건이 절삭성에 미치는 영향에 관한 연구

  • 전태옥;박홍식;김동호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.38-42
    • /
    • 1991
  • Super Duralumin (A2024 - T3)은 가볍고 내식성이 양호할 뿐만 아니라, 석출물($CuAl_2$, $Mg_2$Si)에 의한 시효 경화로 인하여 고강도의 성질을 가지고 있으므로 구조용재, 반공기 및 운반기에 널리 사용되고 있지만, 절삭가공에서 많은 문제점을 내포하고 있다. 따라서 이러한 문제점에 대한 절삭성 향상이 절실히 요구되고 있는 설정이다. 일반적으로 피삭성을 검토하는 경우 철강재료는 공구마멸에 중점을 두지만, Al합금에 있어서는 공구마멸보다는 가공면의 양부를 중요시한다. 이것은 Al이 연질재이므로 절삭시 표면층에 유동이 생겨 양호한 절삭가공면을 얻기 어렵기 때문이다.(중략)

  • PDF

An Experimental Study of Al2017 on Characteristics of the Surface Roughness in Machining Center Processing (머시닝센터 가공에서 Al2017의 표면거칠기 특성에 관한 실험적 연구)

  • Kim, Chan-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.68-72
    • /
    • 2012
  • Al2017 is typical Duralumin of self-hardening aluminum alloy. It is lightweight, formability and machinability so throughout the industries have widely used automobile, electronics, semiconductor and aircraft as material. A variety of CNC machine tool processing technology, scientific principles and experience have been studied in order to increase accuracy and productivity. Using a machining center is to constant amount of side step and cutting characteristics studied changing depth of cut, revolution per minute and feed rate.

Chatacteristics of Deep Hole Machining for Duralumin Using Periodical Change of Feedrate (이송속도의 주기적 변화를 이용한 듀랄루민재의 심공가공 특성)

  • 김용제
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.240-245
    • /
    • 2000
  • This paper presents the experimental study of drilling for duralumin A2024 with intermittently decelerated feed rate. It is achieved through a programmed periodic increase and decrease in the feed rate using a machining center. The following experimental result were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced that wind around the drill causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigated. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in breaking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed frilling is influenced by the feed fluctuation ratio.

  • PDF

Static Creep Behaviour of Super-Duralumin(Al 2024) (초 두랄루민(Al 2024)의 정적인 크리프 거동)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.22-27
    • /
    • 2004
  • Super-duralumin has widely been used as the part materials of aerospace and automobile industry because it has high specific strength and also is light. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, every creep test under four constant stress conditions have been conducted for four temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of super-duralurnin products and we have gotten the following results. First, the stress exponents showed the descending trend as the test temperatures increase. Secondly, the creep activation energy gradually decreased as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy was estimated about 6. And last, the fractographs at the creep rupture showed both the brittle fracture due to the transgranular rupture.

  • PDF

Correction of Dose Distribution at Total Body Irradiation using Compensator

  • Kim Jong Sik;Cho Hyun Sang;Kim Young Kon;Cho Jung Keun;Ju Sang Kyu;Park Young Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • The using of compensator is required to adjust the irregular dose distribution due to irregular thickness of the body in Total Body Irradiation. Aluminuim, copper or lead is generally used as compensator. In our study, we would like to introduce a result of the attenuation and compensation effect of radiation use compensator made by duralumin and its clinical use. The thickness of compensator was calculated by the attenustion of radiation, which was measured by polystyrene phantom and ionization chamber(farmer). The compensation effect of radiation was measured by diode detector. All of conditions were set as in real treatment, and the distanc from source to detector was 446 cm. We also made fixation of device to easily attach the compensator to LINAC. Beam spoiler was menufactured and placed on the patient to irradiate sufficient dose to the skin. diode detector were placed on head, neck, chest, umbilicus. pelvis and knee with each their entranced exit points, and datas of dose distribution were evaluated and compared in each points for eleven patients(Feb. 96-Feb. 97). The attenuation rate of irradiation by duralumin compensator was measured as $1.4\%$ in 2mm thickness. The mean attenuation rate was $1.3\%$ per 2mm as increasing the thickness gradually to 50 mm. By using duralunim compensator, dose distribution in each points of body was measured with ${\pm}2.8\%$ by diode detectior. We could easily calculate the thickness of compensator by measuring the attenuation rate of radiation, remarkably reduce the irragularity of dose distribution duo to the thickness of body and magnify the effect of radiation therapy.

  • PDF

Appropriateness Evaluation of Rural House Collapse Prepare Disaster Shelter Member - Focusing on the Numerical Analysis - (농촌 주택붕괴 대비 방재쉘터의 부재 적정성 평가 - 수치해석을 중심으로 -)

  • Oh, Hyeonmun;Kim, Jungmeyon;Lee, Eungbeom;Lim, Changsu;Kim, Yongseong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.51-60
    • /
    • 2017
  • This research is a basic study to minimize the risk of disaster (earthquakes and landslides) for rural residential houses. In this study, three-dimensional numerical analysis was performed by varying the diameter (D), thickness (T) and the spacing of longitudinal members (C.T.C) of duralumin and galvanized steel pipe as the materials of main members in order to carry out the analysis of the dimension and the applied load of shelter for disaster prevention, and to evaluate the eligibility of members that can satisfy safety and usability. From the evaluation results of the member eligibility by the above numerical analysis, it was found that duralumin has a great influence on the member diameter (D) and thickness (T), and in the case of galvanized steel pipe, its spacing of longitudinal members has a huge amount of influence over the member force, so it is considered that the duralumin and galvanized steel pipe materials can be used as materials for the main members of disaster prevention shelters in terms of safety and usability.