• Title/Summary/Keyword: Durability test mode

Search Result 75, Processing Time 0.03 seconds

Improvement of Durability and Reliability by Developing a Bi-axial Test Process of Road Wheel (차량 로드 휠의 복합축 평가 프로세스 구축을 통한 내구신뢰성 강건화 및 주행안정성 향상)

  • Chung, Soo Sik;Yoo, Yoen Sang;Kim, Dae Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • The steel road wheel on ventilation holes was cracked in the vehicle durability test. But the component durability test by uni-axial, CFT(Cornering Fatigue Test) and RFT(Radial Fatigue Test) had been satisfied. That is, the uni-axial component test could not forecast the crack of vehicle. Therefore this study developed the bi-axial test mode to reflect a vehicle condition(to reflect both vertical and lateral force simultaneously) based on real load data which was measured in Europe and China and developed CAE simulation too. It reproduced the cracks same as vehicle's and verified by bi-axial test machine in the LBF(Fraunhofer Institute for Structural Durability and System Reliability) durability research center in Germany. Finally this the durability CAE simulation by using HMC(Hyundai Motor Company)'s the bi-axial test mode predicts feasibly the steel wheel's durability performance before vehicle durability test.

Development of An Accelerated Durability Test Mode for Fuel Cell (연료전지 가속내구모드 개발)

  • LEE, YONGHEE;OH, DONGJO;JEON, UISIK;LEE, JONGHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.493-498
    • /
    • 2015
  • The fuel cell vehicle is a type of hydrogen vehicle which uses a fuel cell to produce electricity, powering its on-board electric motor. The fuel cell vehicle driving principle is completely different from the internal combustion engine vehicle. In order to ensure the durable quality of the fuel cell vehicle, durability test mode considering the characteristics of the fuel cell must be developed. In this study, we derived the durability test mode profile through collecting and analyzing fuel cell vehicle driving data. Then, the accelerated durability test mode is developed by adding degradation conditions and is experimentally validated to have an acceleration factor of 5~6.

Study on Durability Performance Evaluation of Retarder Parts in Testing Mode for Heavy-duty Vehicle (중대형차량 리타더 단품 내구성 평가를 위한 내구시험모드 개발에 관한 연구)

  • Seo, Dongchoon;Lee, Iksung;Ko, Sangchul;Cho, Sanghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.575-582
    • /
    • 2015
  • The Durability cycle is very important for the success of vehicle testing to evaluate Retarder. The purpose of this study is to develop the durability mode on performance evaluation of retarder. Commercial vehicles are equipped with an auxiliary braking device in order to increase safety. A typical device for retarder depends heavily on imports. Domestic development has now become an urgent task. But, No state has an evaluation method for performance evaluation of the auxiliary braking device. We presented the durability test mode for the performance evaluation of the retarder was verified experimentally.

Development of Proving Ground Test Mode for Durability Test of Active Suspension System (사용자 주행 환경을 고려한 능동 현가 시스템의 PG 내구 시험 모드 개발)

  • Woo, Jongwoon;Lee, Seonbong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.16-23
    • /
    • 2013
  • It is important that proving ground damage is correlated with target customer usage. This paper describes the test mode for durability test of active suspension control system for proving ground correlation and optimization. Acceleration, strain, wheel force and other types of data are collected on a vehicle as it traverses different proving ground surfaces. The primary objective of the analysis is to determine which mixture of proving ground surfaces offers the best representation of customer usage while minimizing the total test time. And durability testing offers the best way to assess the capability of a product to reach its reliability target. The test should be representative of the real environmental load and replicate the same customer usage.

COMPUTATIONAL DURABILITY PREDICTION OF BODY STRUCTURES IN PROTOTYPE VEHICLES

  • Kim, H.-S.;Yim, H.-J.;Kim, C.-B.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.129-135
    • /
    • 2002
  • Durability estimation of a prototype vehicle has traditionally relied heavily on accelerated durability tests using predefined proving grounds or rig tests using a road simulator. By use of those tests, it is very difficult to predict durability failures in actual service environments. This motivated the development of an integrated CAE (Computer Aided Engineering) methodology for the durability estimation of a prototype vehicle in actual service environments. Since expensive computational costs such as computation time and hardware resources are required for a full vehicle simulation in those environments with a very long span of event time, the conventional CAE methodologies have little feasibility. An efficient computational methodology for durability estimations is applied with theoretical developments. The effectiveness of the proposed methodology is shown by the comparison of results of the typical actual service environment such as the city mode with those of the typical accelerated durability test over the Belgian road.

A Study on the Acceleration Durability Test of In-Wheel Drive Gearbox for Military Special Vehicles (군 특수차량용 인휠 드라이브 기어박스의 가속 내구성시험에 관한 연구)

  • Lee, Y.B.;Lee, G.C.;Lee, J.J.;Lim, S.Y.;Kim, W.J.;Kim, K.M.
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.32-38
    • /
    • 2022
  • The in-wheel drive gearbox for military special vehicles converts the high-speed & low-torque output generated by the electric servomotor, into low-speed & high-torque mechanical power. As the vehicle is remotely maneuvered in mountainous terrain, wet fields, rough terrain, etc., the gearbox must generate a maximum input speed exceeding 5,000 rpm, a maximum torque of 245 Nm, and MTBF of 9,600 km. The purpose of this study was to analyze the failure mode of the gearbox, to ensure the durability of the in-wheel drive gearbox. Also, the field load test data of the vehicle was analyzed, the acceleration durability test standards were established, the acceleration durability test was conducted, and the durability test results were analyzed as well.

Study on durability test method for improvement of door trim grip handle friction noise (도어트림 그립핸들 마찰이음 근본개선을 위한 내구 시험법 개발 및 개선연구)

  • Kim, Jongsoo;Na, Hyunghyun;Cho, Youngbin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.233-241
    • /
    • 2018
  • In this paper, we develop a durability test method that can verify the noise caused by the repeated load on the door trim grip handle. The test method was developed in consideration of the load mode and durability test cycle applied to the grip handle. In order to verify the validity of the method, we demonstrated the door trim grip handle noise that occurred in the field claim with the product in the early stage of mass production through the developed test method. Finally, It is used to detect and improve the noise of subsequent development products through the currently developed test method.

Development of an Unmanned Test System Based on Forklift for Mast Operation Durability (지게차 마스트 작동내구를 위한 실차 기반 무인시험장치 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we develops an unmanned test system for the purpose of realizing an actual forklift-based test-bed for the operation durability of the forklift mast. First, two robot actuators were applied to the lever to replace lever manipulation of the operator. For detecting the height of the fork and the tilt angle of the mast, the laser displacement sensor and the inclinometer were installed to the forklift. Next, the embedded control system was used to control the robot actuator with reference to test mode. Experimental evaluation verified that developed test system was effective and practical for the viewpoint of the repeatability of the test mode.

The Effect of Water Emulsified Fuel on a Motorway-Bus Diesel Engine

  • Park, Kweonha;Kwak, Inseok;Oh, Seungmook
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2049-2057
    • /
    • 2004
  • In this study, the combustion characteristics and durability of a diesel engine using emulsified fuel was investigated. Water was used in oil type emulsified fuel. In order to understand the effect of emulsified fuel in a wide range of engine running conditions, D-13 mode was selected as a test condition, and a durability test was included to understand the long-term effect of water. Combustion pressure in a cylinder, exhaust emissions, specific fuel consumption, sound level and maximum torque were measured. NOx and PM were simultaneously reduced and the specific fuel consumption was increased and decreased at low and high loads, respectively. There was no trouble and any damage on the parts of the cylinder during a 500 hour durability test.

Vibration Durability Analysis for Components of Construction Equipment Industry (건설중장비 부품의 진동내구해석)

  • Kim, Sunghwan;Ham, Jeonghoon;Kang, Hyunseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.509-513
    • /
    • 2013
  • There are so many types of construction equipment. Excavator is one of typical construction equipment which is working under the tough and severe environments. It's important for engineers to design CE components by the vibration durability point of view. Traditionally, two typical vibration durability methods to verify the durability of components. The first is experimental method which is using the vibration durability test bench. But experimental approach on vibration durability is needed a lot of cost and time. The second is analytical method which is using the vibration durability analysis such as Dirlik, Stainberg, Lalanne and others methodologies. The one of main advantages on vibration durability analysis can reduce the cost and time. We present a vibration durability analysis process and methodology on the guardrail system in excavator.

  • PDF