• 제목/요약/키워드: Duplex stainless steels

검색결과 78건 처리시간 0.02초

열환원반응관용 내열강의 미세조직과 고온변형거동 (Microstructure and High Temperature Deformation Behavior of Heat Resistant Stainless Steel for a Retort)

  • 최국선;하태권
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.165-170
    • /
    • 2013
  • High temperature deformation behavior of a heat-resistant duplex stainless steel, used as a retort in the Pidgeon process for Mg production, was investigated in this study. 25Cr-8Ni based duplex stainless steels were cast into rectangular ingots, with dimensions of $350mm{\times}350mm{\times}100mm$. Nitrogen and yttrium were added at 0.3wt.% each to enhance the heat-resistance of the steel. Phase equilibrium was calculated using the thermodynamic software FactSage$^{(R)}$ and the database of FSStel. For comparison, cast 310S steel, a widely used heat-resistant austenitic stainless steel, was also examined in this study. Dilatometry was conducted on the as-cast ingots for the temperature range from RT to $1200^{\circ}C$ and the thermal expansion coefficients were evaluated. The nitrogen addition was found to have an effect on the thermal expansion behavior for temperatures between 800 and $1000^{\circ}C$. High temperature tensile and compression tests were conducted on the ingots for temperatures ranging from 900 to $1230^{\circ}C$, which is the operation temperature employed in Mg production by the Silico-thermic reduction process. The steel containing both N and Y showed much higher strength as compared to 310S.

Relationship Between Properties Degradation and Critical Aging Time of Super Austenitic and Duplex Stainless Steels

  • S. H. Choi;Y. R. Yoo;S. Y. Won;G. B. Kim;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.330-340
    • /
    • 2023
  • The objective of this study was to analyze effects of aging time on property degradation of super austenitic stainless steel of PRE 52.8 and super duplex stainless steel of PRE 48.7. To analyze corrosion properties based on aging time, a critical pitting temperature test was performed in a solution of 6% FeCl3 + 1% HCl and an anodic polarization test was performed in deaerated 0.5N HCl + 1N NaCl solution at a temperature of 50 ℃. Surface hardness was measured to analyze mechanical properties. It was found that corrosion properties and mechanical properties deteriorated rapidly as aging time increased. Critical pitting temperature had the most effect on critical aging time at which property changes occurred rapidly, followed by pitting potential and hardness. This trend was found to be closely related to the fraction of sigma phase. Rate of sigma phase formation was found to be significantly faster in duplex stainless steel than in austenitic stainless steel.

질소 이면보호가스 적용성에 관한 연구 (Effect of $N_2$ back shielding gas on the property change of GTA weldment)

  • 백광기;안병식
    • Journal of Welding and Joining
    • /
    • 제5권4호
    • /
    • pp.12-21
    • /
    • 1987
  • To investigate the suitability of nitrogen gas as an internal purging gas, various properties of GTA welded joints of duplex, 316L stainless steel, Cu-Ni alloy pipe using nitrogen purging gas were evaluated with reference to onew purged with argon gas. Mechanical properties evaluated by the tensile, bending test, and hardness value of welded joints with nitrogen gas purging did not show any difference those with argon gas. General and local corrosion rates of each welded joint prepared by nitrogen gas purging also showed no difference with those prepared by argon gas. Based on the present test results it is confirmed that nitrogen is a suitable purging gas for GTA welding of stainless steels and nonferrous piping systems, which can be used at lower cost instead of argon.

  • PDF

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성 (Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

2상 스테인레스 주강의 공냉 열처리 적용 가능성 (Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting)

  • 김봉환;양식;신제식;이상목;문병문
    • 한국주조공학회지
    • /
    • 제26권1호
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.

The Study of Corrosion Behavior of Active Screen Plasma Nitrided Stainless Steels

  • Chiu, L.H.;Chang, C.A.;Yeh, S.H.;Chen, F.S.;Chang, Heng
    • Corrosion Science and Technology
    • /
    • 제6권5호
    • /
    • pp.251-256
    • /
    • 2007
  • Plasma nitriding is a surface treatment process which is increasingly used to improve wear, fatigue and corrosion resistance of industrial parts. Active screen plasma nitriding (ASPN) has both the advantages of the classic cold wall and the hot wall conventional dc plasma nitriding (DCPN) method and the parts to be nitrided are no longer directly exposed to the plasma. In this study, AS plasma nitriding has been used to nitride the UNS S31803 duplex stainless steel, AISI 304 and AISI 316 austenitic stainless steel, and AISI 420 martensitic stainless steel. Treated specimenswere characterized by means of microstructural analysis, microhardness measurements and electrochemical tests in NaCl aerated solutions. Hardness of the nitride cases of AISI 420 stainless steel by Knoop test can get up to 1300 HK0.1. From polarization tests, the corrosion current densities of AISI 420 and UNS S31803specimens ASPN at $420^{\circ}C$ were generally lower than those of their untreated substrates. The corrosion resistance of UNS S31803 duplex stainless steel can be enhanced by plasma nitriding at $420^{\circ}C$ Cowing to the formation of the S-phase.

Corrosion and Repassivation Behavior of Stainless steels in Chloride and Thiosulfate Containing Environments

  • Wang, Y.S.;Singh, P.M.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.184-189
    • /
    • 2015
  • In this study, the combined effect of chloride and thiosulfate ions and the effect of the ratio of the two ions on passivation in 304L, 316L, and the duplex stainless steels 2101 and 2205 are investigated using potentiostatic scratch tests. Cyclic polarization and the scratch tests were used to understand the role of anions on localized corrosion in these systems. It was found that the thiosulfate pitting began at a lower potential for 2101 than 304L in 0.6 M NaCl + 0.03 M $Na_2S_2O_3$ solution. The pit morphologies for 304L, 316L, and 2101 in an 0.6 M NaCl + 0.03 M $Na_2S_2O_3$ solution were very different from each other. The results indicate that the pitting switches from predominately thiosulfate pitting to chloride pitting at approximately 0.1 V.