• 제목/요약/키워드: Ductility capacity

검색결과 1,020건 처리시간 0.027초

무보강 강판 전단벽의 비선형 해석 (A Nonlinear Analysis of Un-stiffened Steel Shear Wall)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제3권2호
    • /
    • pp.47-54
    • /
    • 2003
  • A Steel plate shear wall can be used as one of the lateral force resistant elements in buildings. It have many advantages from a structural point of view such as ductility, energy absorption capacity and initial stiffness etc. In this study to grasp the behavior of steel plate shear wall considering material and geometrical non-linearity, the FEM analyses were carried out using ANSYS(ver. 5.6) program. The analysis results were fully discussed and compared with test results to verify the validity of analysis method. The object of this study is to find out analytically the elasto-plastic behavior of un-stiffened steel plate shear wall.

  • PDF

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

지진발생시 FRP 보강이 횡방향 구속에 미치는 효과 (Circumferential Confinement Effect of Circular Bridge Pier with FRP Wrapping in Earthquake)

  • 최영민;황윤국;권태규;윤순종
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.280-287
    • /
    • 2003
  • The bridge columns with lap-splice reinforcements in earthquake suffered a brittle bond-slip failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP wrapping. The retrofitted columns using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the circumferential confinement effect of existing circular bridge pier strengthened with FRP wrapping for poor lap-splice details. The effects on the confinement of FRP wrapping, such as gap lengths between footing and FRP, fiber orientations, and thicknesses of FRP, were investigated by Quasi-static experiments.

  • PDF

Effectiveness of diagonal shear reinforcement on reinforced concrete short beams

  • Ozturk, Hakan;Caglar, Naci;Demir, Aydin
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.501-510
    • /
    • 2019
  • In the study, an experimental and numerical study is performed to investigate the efficiency of diagonal shear reinforcement (DSR) on reinforced concrete (RC) short beams. For this purpose, 7 RC short beam specimens were tested under a 4-point loading, and a numerical study is conducted by using finite element method. Additionally, the efficiency of addition of DSR to specimens is observed in the experimental study together with the increase in stirrup spacing. Analysis results are compared in terms of load-displacement behavior and failure modes. As a result of the study, a significant improvement both in shear and displacement capacities of the RC short beams are achieved along with addition of DSR in short beams. Moreover, it is deduced from the numerical results that increasing both the diameter and yield strength of DSR makes a significant contribution to the shear capacity and ductility of shear critical RC members.

The torsional behavior of reinforced self-compacting concrete beams

  • Aydin, Abdulkadir C.;Bayrak, Baris
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.187-198
    • /
    • 2019
  • Torsional behaviors of beams are investigated for the web reinforcement and the concrete type. Eight beams with self-compacting concrete (SCC) and twelve beams with conventional concrete (CC) were manufactured and tested. All the models manufactured as the $250{\times}300{\times}1500mm$ were tested according to relevant standards. Two concrete types, CC and SCC were designed for 20 and 40 MPa compressive strength. From the point of web reinforcement, the web spacing was chosen as 80 and 100 mm. The rotation angles of the concrete beams subjected to pure torsional moment as well as the cracks occurring in the beams, the ultimate and critical torsional moments were observed. Moreover, the ultimate torsional moments obtained experimentally were compared with the values evaluated theoretically according to some relevant standards and theories. The closest estimations were observed for the skew-bending theory and the Australian Standard.

Evaluation of performance and seismic parameters of eccentrically braced frames equipped with dual vertical links

  • Mohsenian, Vahid;Nikkhoo, Ali
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.591-605
    • /
    • 2019
  • Investigations on seismic performance of eccentrically braced frames equipped with dual vertical links have received little attention. Therefore, the main goal of this paper is to describe design steps for such frames and evaluate nonlinear performance of this system according to the reliability analysis. In this study, four and eight story frame structures are analyzed and the response modification factors for different intensity and damage levels are derived in a matrix form based on a new approach. According to the obtained results, the system has high ductility and acceptable seismic performance. Moreover, it is concluded that using response modification factor equal to 8 in the design of system provides desirable seismic reliability under the design and maximum probable hazard levels. Due to desirable performance and significant advantages of the dual vertical links, this system can be used as a main lateral load bearing system, in addition to its application for rehabilitation of damaged structures.

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

Enhancement of in-plane load-bearing capacity of masonry walls by using interlocking units

  • Kayaalp, Fatma Birinci;Husem, Metin
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.475-485
    • /
    • 2022
  • This paper presents a comparative experimental study on structural behavior of the interlocking masonry walls under in-plane cyclic loading. The main purpose of this study is to increase lateral load-bearing capacities of masonry walls by using interlocking units. The interlocking units were designed by considering failure modes of masonry walls and produced using lightweight foamed concrete. To this end, three masonry walls which are hollow, fully grouted, and reinforced were constructed with interlocking units. Also, a traditional masonry brick wall was built for comparison reasons. The walls were tested under in-plane cyclic loading. Then, structural parameters of the walls such as lateral load bearing and total energy dissipation capacities, ductility, stiffness degradation as well as failure modes obtained from the tests were compared with each other. The results have shown that the walls with the interlocking units have better structural performance than traditional masonry brick walls and they may be used in the construction of low-rise masonry structures in rural areas to improve in-plane structural performance.

Experimental and numerical study on progressive collapse of composite steel-concrete frames

  • Jing-Xuan Wang;Ya-Jun Shen;Kan Zhou;Yong Yang
    • Steel and Composite Structures
    • /
    • 제50권5호
    • /
    • pp.531-548
    • /
    • 2024
  • This paper presents an experimental investigation into the progressive collapse behavior of composite steel-concrete frames under various column removal scenarios. This study involves testing two two-bay, two-story composite frames featuring CFST columns and profiled steel decking composite slabs. Two removal scenarios, involving the corner column and middle column, are examined. The paper reports on the overall and local failure modes, vertical force-deformation responses, and strain development observed during testing. Findings indicate that structural failure initiates due to fracture and local buckling of the steel beam. Moreover, the collapse resistance and ductility of the middle column removal scenario surpass those of the corner column removal scenario. Subsequent numerical analysis reveals the significant contribution of the composite slab to collapse resistance and capacity. Additionally, it is found that horizontal boundary conditions notably influence the collapse resistance in the middle column removal scenario only. Finally, the paper proposes a simplified calculation method for collapse resistance, which yields satisfactory predictions.

보-전단벽식 구조 시스템의 탄소성 지진응답 해석 (Elasto-plastic Earthquake Response Analysis of Beam-Shear Wall Structural System)

  • 정명채;이정원
    • 한국지진공학회논문집
    • /
    • 제1권1호
    • /
    • pp.57-67
    • /
    • 1997
  • 본 논문의 목적은 보-전단벽식 고층아파트의 단소성 지진응답해석을 수행하여 내진성능을 검토하는 것이다. 이를 위해 우선 구조물을 3차원 입체모델화하여 정적 탄소성해석을 수행하고 층 강성을 평가한 후, 그 결과를 이용하여 집중질량계모델을 사용한 시간이력 응답해석을 수행한다. 이때 탄소성 이력모델로는 modified Clough 모델을, 입력하중으로는 3종류의 기록 지진동 El-Centro 1940 NS, Taft 1952 EW, Hachinohe 1968 NS를 사용하되, 최대 지반가속도를 0.12g, 0.24g로 조절하여 사용한다. 해석모델로 장변 방향을 배치된 전단벽의 단면적이 단변의 0.5배이고, 동일한 평면을 가진 2세대가 일자형으로 배치된 25층의 아파트를 선정한다. 층간 변형각, 소성율등을 구하고 우리나라 및 미국, 일본의 내진규준에서 정하고 있는 제한사항과 비교검토한다.

  • PDF