• Title/Summary/Keyword: Ductility capacity

Search Result 1,030, Processing Time 0.025 seconds

Plastic hinge length for coupled and hybrid-coupled shear walls

  • Abouzar Jafari;Meysam Beheshti;Amir Ali Shahmansouri;Habib Akbarzadeh Bengar
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.367-383
    • /
    • 2023
  • A coupled wall consists of two or more reinforced concrete (RC) shear walls (SWs) connected by RC coupling beams (CBs) or steel CBs (hybrid-coupled walls). To fill the gap in the literature on the plastic hinge length of coupled walls, including coupled and hybrid-coupled shear walls, a parametric study using experimentally validated numerical models was conducted considering the axial stress ratio (ASR) and coupling ratio (CR) as the study variables. A total of sixty numerical models, including both coupled and hybrid-coupled SWs, have been developed by varying the ASR and CR within the ranges of 0.027-0.25 and 0.2-0.5, respectively. A detailed analysis was conducted in order to estimate the ultimate drift, ultimate capacity, curvature profile, yielding height, and plastic hinge length of the models. Compared to hybrid-coupled SWs, coupled SWs possess a relatively higher capacity and curvature. Moreover, increasing the ASR changes the walls' behavior to a column-like member which decreases the walls' ultimate drift, ductility, curvature, and plastic hinge length. Increasing the CR of the coupled SWs increases the walls' capacity and the risk of abrupt shear failure but decreases the walls' ductility, ultimate drift and plastic hinge length. However, CR has a negligible effect on hybrid-coupled walls' ultimate drift and moment, curvature profile, yielding height and plastic hinge length. Lastly, using the obtained results two equations were derived as a function of CR and ASR for calculating the plastic hinge length of coupled and hybrid-coupled SWs.

Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation

  • Muhammad Umar Khan;Shamsad Ahmad;Mohammed A. Al-Osta;Ali Husain Algadhib;Husain Jubran Al-Gahtani
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.161-170
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) is produced using high amount of cementitious materials, very low water/cementitious materials ratio, fine-sized fillers, and steel fibers. Due to the dense microstructure of UHPC, it possesses very high strength, elasticity, and durability. Besides that, the UHPC exhibits high ductility and fracture toughness due to presence of fibers in its matrix. While the high ductility of UHPC allows it to undergo high strain/deflection before failure, the high fracture toughness of UHPC greatly enhances its capacity to absorb impact energy without allowing the formation of severe cracking or penetration by the impactor. These advantages with UHPC make it a suitable material for construction of the structural members subjected to special loading conditions. In this research work, the UHPC mixtures having three different dosages of steel fibers (2%, 4% and 6% by weight corresponding to 0.67%, 1.33% and 2% by volume) were characterized in terms of their mechanical properties including facture toughness, before using these concrete mixtures for casting the slab specimens, which were tested under high-energy impact loading with the help of a drop-weight impact test setup. The effect of fiber content on the impact energy absorption capacity and central deflection of the slab specimens were investigated and the equations correlating fiber content with the energy absorption capacity and central deflection were obtained with high degrees of fit. Finite element modeling (FEM) was performed to simulate the behavior of the slabs under impact loading. The FEM results were found to be in good agreement with their corresponding experimentally generated results.

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

Experimental Verification of Reinforced Concrete Beam with FRP Rebar (FRP 보강콘크리트 보의 휨거동에 관한 실험적 연구)

  • Oh, Hong Seob;Ahn, Kwan-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.

Experimental Study on the Hysteretic Behavior of Large Concrete Panel Structures Subjected to Cyclic Load (반복하중을 받는 대형 콘크리트 판구조의 이력거동에 관한 실험적 연구-3층 대형판 구조체 실험결과를 중심으로)

  • 서수연;박병순;이봉효;김성수;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.179-184
    • /
    • 1992
  • Four 3-story 1/2 scaled large concrete panel structures were designed and tested to estimate the seismic resistance capacity of large concrete panel high rise building systems, Test specimens were modeled three story of 24 or 15 story buildings and set up to represent the actural stress of the building . The axial force was constant and the horizontal force was loaded by ductility ratio. Results indicated that the joints of specimens were behavied monolithically to maximum strength. It was shown that the joint box connecting system had lower maximum strength and energy dissipation capacity than welding connection system, but had better deformation capacity.

  • PDF

A Study on Seismic Capacity of Circular Spiral Reinforced Concrete Bridge Piers used in High Strength Concrete (고강도 원형나선철근기둥의 내진성능에 관한 연구)

  • 김광수;김민구;배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.547-552
    • /
    • 2001
  • This research was conducted to investigate the seismic behavior and capacity assessment of circular spiral reinforcement concrete bridge piers used in high strength concrete. The displacement ductility, response modification factor(R), effective stiffness and plastic hinge region etc. was used to assess the seismic behavior and capacity of circular spiral reinforcement concrete bridge piers. The experimental variables of bridge piers test consisted of amount and spacing, different axial load levels. From the quasi-static tests on 9 bridge piers and analysis, it is found that current seismic design code specification of transverse confinement steel requirements and details may be revised.

  • PDF

Flexural behaviour of reinforced concrete beams strengthened with NSM CFRP prestressed prisms

  • Liang, Jiong-Feng;Yu, Deng;Xie, Shengjun;Li, Jianping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.291-295
    • /
    • 2017
  • The behaviour of reinforced concrete beams strengthened with near surface mounted (NSM) CFRP prestressed prisms was experimentally investigated. Five RC beams were tested under four point bending. All beams were made with dimensions of 300 mm in width, 2000 mm in length and 150 in depth. The effects of presstress level of CFRP prestressed prisms and prism material type were studied. The failure mode, load capacity, deflection, CFRP strain, steel strain and ductility of the tested beams were all analyzed. The results showed that the behavior of the reinforced concrete beams strengthened with NSM CFRP prestressed prisms showed a significant increase in the load-carrying capacity and the deformation capacity. The NSM CFRP prestressed prisms strengthening technique could be considered as an effective method for repairing RC structures.

Seismic behaviour of steel beam-to-column joints with column web stiffening

  • Ciutina, A.L.;Dubina, D.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.493-512
    • /
    • 2006
  • The present paper summarizes the experimental research carried out at the "Politehnica" University of Timisoara, Romania, with the scope of investigating the influence of different column web stiffening solutions on the performance of beam-to-column joints of Moment Resisting Steel Frames. The response parameters, such as resistance, rigidity and ductility were examined. Five different types of panel web stiffening were compared with regard to a reference test. A quasi-linear relationship between the moment capacity and the total shear area of the web panel was observed from the experimental tests while the initial rigidity increased non-proportionally with the same area. Comparisons are presented of the experimental tests with the mathematical model developed by Krawinkler and with the model stipulated in Eurocode 3 Part 1.8. These comparisons showed a generally good agreement in the case of moment capacity, while the computed rigidities were always greater than the experimental rigidities.