• Title/Summary/Keyword: Ductile failure

Search Result 379, Processing Time 0.027 seconds

Plasticity and Fracture Behaviors of Marine Structural Steel, Part III: Experimental Study on Failure Strain (조선 해양 구조물용 강재의 소성 및 파단 특성 III: 파단 변형률에 관한 실험적 연구)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.53-65
    • /
    • 2011
  • This is the third of several companion papers dealing with the derivation of material constants for ductile failure criteria under hydrostatic stress. It was observed that the ultimate engineering stresses and elongations at fracture from tensile tests for round specimens with various notch radii tended to increase and decrease, respectively, because of the stress triaxiality. The engineering stress curves from tests are compared with numerical simulation results, and it is proved that the curves from the two approaches very closely coincide. Failure strains are obtained from the equivalent plastic strain histories from numerical simulations at the time when the experimental engineering stress drops suddenly. After introducing the new concept of average stress triaxiality and accumulated average strain energy, the material constants of the Johnson-Cook failure criterion for critical energies of 100%, 50%, and 15% are presented. The experimental results obtained for EH-36 steel were in relatively good agreement with the 100% critical energy, whereas the literature states that aluminum fits with a 15% critical energy. Therefore, it is expected that a unified failure criterion for critical energy, which is available for most kinds of ductile materials, can be provided according to the used materials.

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

An Experimental Study on Mechanical Properties of Ductile Concrete with the Kinds of Aggregate (골재종류에 따른 고인성 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Han Byung-chan;Yang Il-seung;Park Wan-shin;Lim Seung-chan;Morii Naoharu;Youn Hyun-do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.61-64
    • /
    • 2005
  • Concrete is one of the principal materials for the structure and it is widely used all over the world, but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property, Ductile Fiber Reinforced Cementitious Composites (DFRCC) have been developed, and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This paper is to estimate experimentally the mechanical properties of ductile concrete with the kinds of used fine and coarse aggregate for purpose of development of high ductile concrete mixing coarse aggregate. As the results, ductile concrete mixed coarse aggregate showed the displacement-hardening behavior under bending load similar to DFRCC, and its compressive and bending performance varied according to the kinds of used coarse aggregate.

  • PDF

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.

Development of Earthquake Resistant Analysis Models for Typical Roadway Bridges (일반도로교의 내진해석모델 개발)

  • 국승규;김판배
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • The structural safety required in general design is to be proved with safety factors provided for structural members in elastic range. But, for the safety requirement in the earthquake resistant design, a specific ductile failure mechanism in plastic range should be verified according to the structural configuration. Therefore such verifications should be done in the preliminary design stage by comparing various design alternatives. In the main design stage only a confirmation of the ductile failure mechanism is required. In this study typical roadway bridges are selected and analysis models are presented for the preliminary and main design. For the two models, vibration periods and mode shapes are compared and the multi-mode spectrum method is applied to determine failure mechanisms. The failure mechanisms obtained with the two models are compared to check the properness of the model used for the preliminary design, which may well be used as an earthquake resistant analysis model in practice.

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

Nonlinear shear-flexure-interaction RC frame element on Winkler-Pasternak foundation

  • Suchart Limkatanyu;Worathep Sae-Long;Nattapong Damrongwiriyanupap;Piti Sukontasukkul;Thanongsak Imjai;Thanakorn Chompoorat;Chayanon Hansapinyo
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • This paper proposes a novel frame element on Winkler-Pasternak foundation for analysis of a non-ductile reinforced concrete (RC) member resting on foundation. These structural members represent flexural-shear critical members, which are commonly found in existing buildings designed and constructed with the old seismic design standards (inadequately detailed transverse reinforcement). As a result, these structures always experience shear failure or flexure-shear failure under seismic loading. To predict the characteristics of these non-ductile structures, efficient numerical models are required. Therefore, the novel frame element on Winkler-Pasternak foundation with inclusion of the shear-flexure interaction effect is developed in this study. The proposed model is derived within the framework of a displacement-based formulation and fiber section model under Timoshenko beam theory. Uniaxial nonlinear material constitutive models are employed to represent the characteristics of non-ductile RC frame and the underlying foundation. The shear-flexure interaction effect is expressed within the shear constitutive model based on the UCSD shear-strength model as demonstrated in this paper. From several features of the presented model, the proposed model is simple but able to capture several salient characteristics of the non-ductile RC frame resting on foundation, such as failure behavior, soil-structure interaction, and shear-flexure interaction. This confirms through two numerical simulations.

A Case Study on the Failure of Piston for Marine Diesel Engine (선박용 디젤기관의 피스톤 파손사고에 대한 연구)

  • Kim, Jong-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.222-223
    • /
    • 2005
  • The Any failure of piston of marine diesel engine must be regarded as serious, and any steps which can be taken to prevent such failure are desirable. The purposes of this study is to investigate and to analyse the failure causes of piston of marine diesel engine. If this paper has accomplished that end it can be counted as being of some slight value to the marine industry.

  • PDF

Laboratory investigation of unconfined compression behavior of ice and frozen soil mixtures

  • Jin, Hyunwoo;Lee, Jangguen;Zhuang, Li;Ryu, Byung Hyun
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.219-226
    • /
    • 2020
  • Unconfined compression test (UCT) is widely conducted in laboratories to evaluate the mechanical behavior of frozen soils. However, its results are sensitive to the initial conditions of sample creation by freezing as well as the end-surface conditions during loading of the specimen into the apparatus for testing. This work compared ice samples prepared by three-dimensional and one-dimensional freezing. The latter created more-homogenous ice samples containing fewer entrapped air bubbles or air nuclei, leading to relatively stable UCT results. Three end-surface conditions were compared for UCT on ice specimens made by one-dimensional freezing. Steel disc cap with embedded rubber was found most appropriate for UCT. Three frozen materials (ice, frozen sand, and frozen silt) showed different failure patterns, which were classified as brittle failure and ductile failure. Ice and frozen sand showed strain-softening, while frozen silt showed strain-hardening. Subsequent investigation considered the influence of fines content on the unconfined compression behavior of frozen soil mixtures with fines contents of 0-100%. The mixtures showed a brittle-to-ductile transition of failure patterns at 10%-20% fines content.