• Title/Summary/Keyword: Duct mach number

Search Result 29, Processing Time 0.024 seconds

A Study of the Impulse Wave Discharged from a Perforated Pipe (다공관으로부터 방출되는 펄스파에 관한 연구)

  • Shin Hyun Dong;Kweon Yong Hun;Kim Heuy Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • When a shock wave discharges from an open end of a duct, an impulse wave is generated outside the duct, causing serious noise and vibration problems. The magnitude of the impulse wave can be reduced by installing of a perforated duct. In the current study, the characteristics of the impulse wave discharged from the exit of a perforated duct are numerically investigated. A TVD (total variation diminishing) scheme is used to solve the unsteady, axisymmetric, compressible Euler equations. In computations, the porosity of a perforated pipe $(\sigma)$ and the Mach number of incident shock wave $(M_s)$ are varied in the range of $\sigma=0\~19\%\;and\;M_s=1.01\~1.50$, respectively. The results show that the directivity and magnitude of impulse wave strongly depend upon the Mach number of incident shock wave and the porosity of the perforated pipe. The present CFD results are in close agreement with experimental results.

  • PDF

Three-Dimensional Computations of the Impulsive Wave Discharged from a Duct

  • Lee Young-Ki;Kweon Yong-Hun;Kim Heuy-Dong;Setoguchi Toshiaki
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.605-617
    • /
    • 2005
  • A sudden discharge of mass flow from the exit of a duct can generate an impulsive wave, generally leading to undesirable noise and vibration problems. The present study develops an understanding of unsteady flow physics with regard to the impulsive wave discharged from a duct, using a numerical method. A second order total variation diminishing scheme is employed to solve three-dimensional, unsteady, compressible Euler equations. Computations are performed for several exit conditions with and without ground and wall effects under a change in the Mach number of an initial shock wave from 1.1 to 1.5. The results obtained show that the directivity and magnitude of the impulsive wave discharged from the duct are significantly influenced by the initial shock Mach number and by the presence of the ground and walls.

The Prediction of Air Flow and Pressure Loss at Inlet Duct (입구덕트 공기유량 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total, static pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

The Air Flow Measurement and Prediction of Pressure Loss at Engine Inlet Duct (엔진 입구 덕트에서 공기유량 측정 및 압력손실 예측방법)

  • Lee, Bo-Hwa;Yang, In-Young;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • The purpose of this paper was to address the methodology of the air flow measurement using duct mach number that was considered area-weighed average obtained by total pressure and temperature measured at engine inlet duct. Without installing boundary rake, the prediction of air flow measurement was discussed. Actual air flow measurement and pressure value using pressure loss through inlet seal were described to improve the reliability and operability of altitude engine test facility.

  • PDF

DEPENDENCE OF WEIGHTING PARAMETER IN PRECONDITIONING METHOD FOR SOLVING LOW MACH NUMBER FLOW (낮은 Mach수유동 해석을 위한 Preconditioning 가중계수의 의존성)

  • An, Y.J.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • A dependence of weighting parameter in preconditioning method for solving low Mach number flow with incompressible flow nature is investigated. The present preconditioning method employs a finite-difference method applied Roe‘s flux difference splitting approximation with the MUSCL-TVD scheme and 4th-order Runge-Kutta method in curvilinear coordinates. From the computational results of benchmark flows through a 2-D backward-facing step duct it is confirmed that there exists a suitable value of the weighting parameter for accurate and stable computation. A useful method to determine the weighting parameter is introduced. With this method, high accuracy and stable computational results were obtained for the flow with low Mach number in the range of Mach number less than 0.3.

Enlarge duct length optimization for suddenly expanded flows

  • Pathan, Khizar A.;Dabeer, Prakash S.;Khan, Sher A.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • In many applications like the aircraft or the rockets/missiles, the flow from a nozzle needs to be expanded suddenly in an enlarged duct of larger diameter. The enlarged duct is provided after the nozzle to maximize the thrust created by the flow from the nozzle. When the fluid is suddenly expanded in an enlarged duct, the base pressure is generally lower than the atmospheric pressure, which results in base drag. The objective of this research work is to optimize the length to diameter (L/D) ratio of the enlarged duct using the CFD analysis in the flow field from the supersonic nozzle. The flow from the nozzle drained in an enlarged duct, the thrust, and the base pressure are studied. The Mach numbers for the study were 1.5, 2.0 and 2.5. The nozzle pressure ratios (NPR) of the study were 2, 5 and 8. The L/D ratios of the study were 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Based on the results, it is concluded that the L/D ratio should be increased to an optimum value to reattach the flow to an enlarged duct and to increase the thrust. The supersonic suddenly expanded flow field is wave dominant, and the results cannot be generalized. The optimized L/D ratios for various combinations of flow and geometrical parameters are given in the conclusion section.

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

Design Study of Engine Inlet Duct for Measurement Improvement of the Flow Properties on AIP (AIP면 유동측정 정확도 향상을 위한 가스터빈엔진 입구덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sung Don;Kim, Yong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • In this study, gas turbine engine inlet duct was designed to satisfy uniform flow at aerodynamic interface plane (AIP). Haack-series was selected as nose cone profile and duct outer radius($r_o$) was designed to satisfy to match with area change rate between the nose cone and outer duct wall by the 1-D sizing. The design object of the inlet duct wall profile which has the gradual area change rate was uniform Mach number in the core flow region and minimum boundary later thickness at the both inner nose wall and outer duct wall. The flow characteristics inside the inlet duct was evaluated using CFD. The static pressure distribution at the AIP showed uniform pattern within 0.16%. Based on Mach number profile, the boundary layer thickness was 2% of channel height. Kiel temperature rake location was decided less than 100 mm in front of nose cone where the Mach number is less than 0.1 in order to maximize the temperature probe recovery rate.

Preliminary Performance Assessment of a Fuel-Cell Powered Hypersonic Airbreathing Magjet

  • Bernard Parent;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.703-712
    • /
    • 2004
  • A variant of the magnetoplasma jet engine (magjet) is here proposed for airbreathing flight in the hypersonic regime. As shown in Figure 1, the engine consists of two distinct ducts: the high-speed duct, in which power is added electromagnetically to the incoming air by a momentum addition device, and the fuel cell duct in which the flow stagnation temperature is reduced by extracting energy through the use of a magnetoplas-madynamic (MPD) generator. The power generated is then used to accelerate the flow exiting the fuel cells with a fraction bypassed to the high-speed duct. The analysis is performed using a quasi one-dimensional model neglecting the Hall and ion slip effects, and fix-ing the fuel cell efficiency to 0.6. Results obtained show that the specific impulse of the magjet is at least equal to and up to 3 times the one of a turbojet, ram-jet, or scramjet in their respective flight Mach number range. Should the air stagnation temperature in the fuel cell compartment not exceed 5 times the incoming air static temperature, the maximal flight Mach number possible would vary between 6.5 and 15 for a magnitude of the ratio between the Joule heating and the work interaction in the MPD generator varied between 0.25 and 0.01, respectively. Increasing the mass flow rate ratio between the high speed and fuel cell ducts from 0.2 to 20 increases the engine efficiency by as much as 3 times in the lower supersonic range, while resulting in a less than 10% increase for a flight Mach number exceeding 8.

  • PDF

Study of the Weak Shock Wave Discharged from an Annular Tube (환형 관출구로부터 방출되는 약한 충격파에 관한 연구)

  • Kweon Yong-Hun;Lee Dong-Hoon;Kim Heuy-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.113-116
    • /
    • 2002
  • The shock wave discharged from an annular duct leads to very complicated flow features, such as Mach stem, spherical waves, and vortex rings. In the current study, the merging phenomenon and propagation characteristics of the shock wave are numerically investigated using a CFD method. The Harten-Yee's total variation diminishing (TVD) scheme is used to the unsteady, axisymmetric, two-dimensional, compressible Euler equations. The Mach number of incident shock wave $M_s$ is varied in the range below 2.0. The computational results are visualized to observe the major features of the annular shock waves discharged from the tube. On the symmetric axis, the peak pressure produced by the shock wave and its location depend upon strongly the radius of the annular tubes. A Mach stem is generated along the symmetric axis of the annular tubes.

  • PDF