• Title/Summary/Keyword: Duct Model

Search Result 332, Processing Time 0.022 seconds

Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation (환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화)

  • Lee, Sang Hyuk;Kwo, Oh Joon;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

A Study on the Shape of KRISO Propulsion Efficiency Improvement Devices(K-duct) using CFD (CFD를 이용한 KRISO 추진효율 향상 장치(K-duct) 형상 특성에 관한 연구)

  • Kim, Jin-wook;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.474-481
    • /
    • 2018
  • This paper is to compare by numerical analysis the flow characteristics and propulsion performance of stern with the shape change of K-duct, a pre-swirl duct developed by Korea Research Institute of Ships & Ocean Engineering (KRISO). First, the characteristics of the propeller and the resistance and self-propulsion before and after the attachment of the K-duct to the ship were verified and the validity of the calculation method was confirmed by comparing this result with the model test results. After that, resistance and self-propulsion calculations were performed by the same numerical method when the K-duct was changed into five different shapes. The efficiency of the other five cases was compared using the delivery horsepower in the model scale and the flow characteristics of the stern were analyzed as the velocity and pressure distributions in the area between the duct end and the propeller plane. For the computation, STAR-CCM +, a general-purpose flow analysis program, was used and the Reynolds Averaged Navier-Stokes (RANS) equations were applied. Rigid Body Motion (RBM) method was used for the propeller rotating motion and SST $k-{\omega}$ turbulence model was applied for the turbulence model. As a result, the tangential velocity of the propeller inflow changed according to the position angle change of the stator, and the pressure of the propeller hub and the cap changes. This regulated the propeller hub vortex. It was confirmed that the vortex of the portion where the fixed blade and the duct meet was reduced by blunt change.

Parametric Designs of a Pre-swirl Duct for the 180,000DWT Bulk Carrier Using CFD (CFD를 이용한 180,000 DWT Bulk Carrier용 Pre-Swirl Duct의 파라메트릭 설계)

  • Cho, Han-Na;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.343-352
    • /
    • 2016
  • In this study, a pre-swirl duct for the 180,000 DWT bulk carrier has been designed from a propulsion standpoint using CFD. The stern duct - designed by NMRI - was selected as the initial duct. The objective function is to minimize the value of delivered power in model scale. Design variables of the duct include duct angle, diameter, chord length, and vertical and horizontal displacements from the center. Design variables of the stators are blade number, arrangement angle, chord length, and pitch angle. A parametric design was carried out with the objective function obtained using CFD. Reynolds averaged Navier-Stokes equations have been solved; and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. MRF and sliding mesh models have been applied to simulate the actuating propeller. A self-propulsion point has been obtained from the results of towing and self-propelled computations, i.e., form factor obtained from towing computation and towing forces obtained from self-propelled computations of two propeller rotating speeds. The reduction rate of the delivered power of the improved stern duct is 2.9%, whereas that of the initial stern duct is 1.3%. The pre-swirl duct with one inner stator in upper starboard and three outer stators in portside has been designed. The delivered power due to the designed pre-swirl duct is reduced by 5.8%.

Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier (176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석)

  • Yoo, Gwang Yeol;Kim, Moon Chan;Shin, Yong Jin;Shin, Irok;Kim, Hyun Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.

Investigating Dynamic Characteristics on Support Base for IPB Duct System and Reducing Vibration for IPB Duct (IPB 덕트의 진동저감과 기초에 대한 동특성 고찰)

  • Yang, Kyeong-Hyeon;Cho, Chul-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.495-500
    • /
    • 2001
  • Because of resonance between natural frequency of the second floor base for IPB(Isolated Phase Bus) duct supports in a power plant and operation frequency of the turbine, there was high amplitude vibration on IPB duct. To reduce vibration of IPB duct, Firstly it was set a FEM model to seek the mode shape for the concrete structure. Secondly, it was carried out dynamic analysis for the FEM model. Lastly, because the natural frequency of the concrete structure could not be changed, it was changed supports position for the IPB duct near to beams. It resulted in reducing vibration of IPB duct.

  • PDF

Computational study on turbulent flows inside the duct of marine waterjet propulsor (선박 워터제트 추진기 덕트 내부의 난류유동 해석에 관한 연구)

  • Park Il-Ryong;Kim Wu-Joan;Ahn Jong-Woo;Kim Ki-Sup
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.181-184
    • /
    • 2002
  • CFD calculations are carried out to investigate the turbulent flow characteristics inside the duct of marine waterjet propulsors. The Reynolds-averaged Wavier-Stokes equations are solved using a finite-volume method. Standard $k-{\varepsilon}$ model and realizable $k-{\varepsilon}$ model are evaluated with an existing experimental data. Multi-block grid topology is adopted to describe the details of complex duct geometry. The present numerical methods are applied to the preliminary duct design of new waterjet propulsor system. Four different influx conditions are simulated to find out pressure and velocity distribution inside the intake duct. Attention is also paid upon the possible flow separation inside the waterjet duct. It is found that CFD tools can be used for the initial evaluation of inflow condition into the impeller of waterjet propulsor system.

  • PDF

An Experimental Animal Model of Anomalous Pancreaticobiliary Duct Union (췌담관 합류이상의 실험동물 모델)

  • Han, Seok-Joo;Chang, Hang-Seok;Kim, Jong-Sung;Han, Jin-Soo;Kim, Ho-Geun;Hwang, Eui-Ho
    • Advances in pediatric surgery
    • /
    • v.4 no.2
    • /
    • pp.100-109
    • /
    • 1998
  • The anomalous pancreaticobiliary duct union (APBDU) might cause the formation of choledochal cyst and malignancies of hepatopancreaticobiliary system. The purpose of this study is to make an experimental animal model of APBDU similar to that of human. One to two-month-old Mongrel dogs (n=12) were divided into two groups; the control group (n=2) had a sham operation performed, and in the experimental group (n=10) the end of distal ' common bile duct (CBD) was anastomosed to the side of the dorsal pancreatic duct making APBDD. Serum was obtained for chemical analysis on the 10th postoperative day. The dogs were sacrificed at the 5th week (n=3), the 6th week (n=3), the 7th week (n=2), the 8th week (n=2) and the 6th month (n=2) after the experimental surgery. With sacrifice, operative cholangiogram was taken, and bile juice was obtained for chemistry and bacterial culture. The en-bloc specimens of the hepatopancreaticobiliary system were removed for microscopic examination. Serum and bile juice amylase levels were elevated in the experimental group(n=10), but not in the control group(n=2). Operative cholangiograms of control group revealed no evidence of bile duct dilatation.. On the other hand, the bile duct in the experimental group was markedly dilated without any evidence of stenosis at the anastomosis site (n=10). Histologic examination of the hepatopancreaticobiliary system in the experimental group resembled the findings of choledochal cyst in human. The APBDU of this animal model can produce bile duct dilatation by pancreaticobiliary reflux. We think that this animal model can be potentially promising for the research about the APBDU associated hepatopancreaticobiliary diseases.

  • PDF

A Study on the Wake Duct For Energy Saving (에너지 절약을 위한 Wake Duct 특성 연구)

  • Kim, Eun-Chan;Gang, Guk-Jin
    • 한국기계연구소 소보
    • /
    • s.17
    • /
    • pp.177-187
    • /
    • 1987
  • This report describes the study result of the hydrodynamics characteristics for the wake duct. Two wake ducts for the DWT 25,000 Product Carrier were designed and manufactured. The resistance and propulsion performance of the model with them was evaluated by model tests. The object of the present research for the wake duct is to establish the foundation of the design technique and the performance prediction ability of the one, and furthermore, to prepare the base of the development of new type energy saving device

  • PDF

An Experimental Study Improving Ventilation of Container Ship Hold Using Horizontal Upward Jet Duct (수평 상향 분사 덕트를 이용한 컨테이너선 화물창 환기 개선에 대한 실험적 연구)

  • Park, Il-Seouk;Park, Sang-Min;Ha, Ji-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.236-245
    • /
    • 2006
  • The ventilation performance for the various venting duct arrays has been experimentally compared in the scaled model of the container hold. Most container ships have the ventilation duct system to remove effectively the condensing heat released from container refrigerator. The existing duct system is vertically installed and basically has the number of duct as many as the columns of reefer container stack. In this study, to make up for the weak points having stagnantly hot legions in the centered area of container hold for the present system, the horizontal upward jotting duct system was proposed and proved by temperature rising tests on the scaled model. In this paper, the expected flow regimes and the thermal and hydrodynamic analogies as well as the measured temperature distributions in a hold for various duct types and heat released rates are deeply discussed.

Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow (사각덕트내 직각엘보우를 지난 유체유동에 관한 연구)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.