• Title/Summary/Keyword: DubaiSat-1

Search Result 9, Processing Time 0.021 seconds

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.

Performance Evaluation of Thermal Control Subsystem of EOS-D Ver.1.0 from In-orbit Telemetry Data (비행 데이터를 이용한 EOS-D Ver.1.0의 열제어계 성능 평가)

  • Chang, Jin-Soo;Kim, Jong-Un;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Seung-Uk;An, Su-Mi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.70-79
    • /
    • 2016
  • Satrec Initiative successfully developed a high-resolution electro-optical camera system, EOS-D Ver.1.0. EOS-D Ver.1.0 is the main payload of DubaiSat-2 and Deimos-2, which are developed based on the SI-300 platform of Satrec Initiative. After the launch and early operation (LEOP) of DubaiSat-2 and Deimos-2, we performed refocusing for the telescope of EOS-D Ver.1.0 to compensate for the dimensional change of its metering structure by moisture out-gassing. Before and after refocusing, we conducted the performance evaluation of thermal control system(TCS) for EOS-D Ver.1.0 using the in-orbit telemetry data. The evaluation showed EOS-D Ver.1.0 was under well-controlled thermal environment, which demonstrates TCS was designed and developed to meet all requirements.

MTF Assessment and Image Restoration Technique for Post-Launch Calibration of DubaiSat-1 (DubaiSat-1의 발사 후 검보정을 위한 MTF 평가 및 영상복원 기법)

  • Hwang, Hyun-Deok;Park, Won-Kyu;Kwak, Sung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.573-586
    • /
    • 2011
  • The MTF(modulation transfer function) is one of parameters to evaluate the performance of imaging systems. Also, it can be used to restore information that is lost by a harsh space environment (radioactivity, extreme cold/heat condition and electromagnetic field etc.), atmospheric effects and falloff of system performance etc. This paper evaluated the MTF values of images taken by DubaiSat-1 satellite which was launched in 2009 by EIAST(Emirates Institute for Advanced Science and Technology) and Satrec Initiative. Generally, the MTF was assessed using various methods such as a point source method and a knife-edge method. This paper used the slanted-edge method. The slantededge method is the ISO 12233 standard for the MTF measurement of electronic still-picture cameras. The method is adapted to estimate the MTF values of line-scanning telescopes. After assessing the MTF, we performed the MTF compensation by generating a MTF convolution kernel based on the PSF(point spread function) with image denoising to enhance the image quality.

Design of DubaiSAT-1 S-band Receiver RF block (DubaiSAT-1 위성용 S-band 수신기의 RF 블록 설계)

  • Park, In-Yong;Min, Seung-Hyun;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • A FSK receiver RF block has been developed for Dubaisat-1 Low Earth Orbit satellite. The receiver has Doppler tracking function which compensate frequency shift on uplink channel for commanding the satellite. It consist of LNA, downconverter and IF module. The IF module has Doppler tracking circuitry which sweep and lock on to input signal. It satisfies the requirement of the Dubaisat-1 in mass, power consumption, tracking speed and BER performance.

Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites (저궤도 위성의 실시간 On-board 궤도 결정 성능 분석)

  • Kim, Eun-Hyouek;Koh, Dong-Wook;Chung, Young-Suk;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In this paper, a real time on-board orbit determination method using the extended kalman filter is suggested and its performance is analyzed in the environment of the orbit. Considering the limited on-board resources, the $J_2$ orbit propagate model and the GPS navigation solution are used for on-board orbit determination. The analysis result of the on-board orbit determination method implemented in DubaiSat-2 showed that position and velocity error are improved from 70.26 m to 26.25 m and from 3.6 m/s to 0.044 m/s, respectively when abnormal excursion errors is removed in the GPS navigation solution.

Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 using STM Thermal Vacuum Test Result (STM 열진공 시험 결과를 이용한 EOS-C Ver.3.0 열제어계 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1232-1239
    • /
    • 2010
  • A high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, is under development in Satrec Initiative. We designed this system to give improved thermal performance compared with the EOS-C Ver.2.0 which is the main payload of DubaiSat-1 by optimizing the active and passive thermal control design. We developed the Structural-Thermal Model (STM) and verified the design margin by performing the qualification level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) through the thermal balance test. As a result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0.

Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System (전자광학카메라 시스템의 열제어계 설계 및 개발)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.798-804
    • /
    • 2009
  • A high-resolution electro-optical camera system, EOS-C, is under development in Satrec Initiative. This system is the mission payload of a 400-kg Earth observation satellite. We designed this system to give improved opto-mechanical and thermal performance compared with a similar camera system to be flown on the DubaiSat-1 system. The thermal control subsystem (TCS) of the EOS-C system uses heaters to meet the opto-mechanical requirements during in-orbit operation and it uses different thermal coating materials and multi-layer insulation (MLI) blankets to minimize the heater power consumption. We performed its thermal analysis for the mission orbit using a thermal analysis model and the result shows that its TCS satisfies the design requirements.