• Title/Summary/Keyword: Dual-frequency modulation

Search Result 74, Processing Time 0.026 seconds

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • Jeon, Min-Hwan;Gang, Se-Gu;Park, Jong-Yun;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

Independently-Controlled Dual-Channel LED Driver using LLC Resonant Converter (LLC 공진형 컨버터를 이용한 독립제어 가능한 2 채널 LED 구동회로)

  • Hwang, Min-Ha;Choi, Yoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • The independently regulated dual-output LLC resonant converter using only one power stage and one control IC is proposed in this paper. The conventional dual-output LLC resonant converter requires the extra non-isolated DC/DC converter to obtain the tightly regulated slave output voltage, which results in the low power conversion efficiency and high production costs. On the other hand, since the proposed converter controls the master and slave output voltages by pulse width modulation(PWM) and pulse frequency modulation(PFM), it can achieve tightly regulated dual output voltages without the additional non-isolated DC/DC converter. Therefore, it features a high efficiency and low cost. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a 40W LED driver prototype are presented.

DUAL DUTY CYCLE CONTROLLED SOFT-SWITCHING HIGH FREQUENCY INVERTER USING AUXILIARY REVERSE BLOCKING SWITCHED RESONANT CAPACITOR

  • Bishwajit, Saha;Suh, Ki-Young;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.129-131
    • /
    • 2006
  • This paper presents a new ZVS-PWM high frequency inverter. The ZVS operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. The operating principle and the operating characteristics of the new high frequency circuit treated here are illustrated and evaluated on the basis of simulation results. It was examined that the complete soft switching operation can be achieved even for low power setting ranges by introducing the high frequency dual duty cycle control scheme. In the proposed high frequency inverter treated here, the dual mode pulse modulation control strategy of the asymmetrical PWM in the higher power setting ranges and the lower power setting ones, the output power of this high frequency inverter could introduce in order to extend soft switching operation ranges. Dual duty cycle is used to provide a wide range of output power regulation that is important in many high frequency inverter applications. It is more suitable for induction heating applications the operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

  • PDF

The Optimal Subchannel and Bit Allocation for Multiuser OFDM System: A Dual-Decomposition Approach (다중 사용자 OFDM 시스템의 최적 부채널 및 비트 할당: Dual-Decomposition 방법)

  • Park, Tae-Hyung;Im, Sung-Bin;Seo, Man-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.90-97
    • /
    • 2009
  • The advantages of the orthogonal frequency division multiplexing (OFDM) are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. To further utilize vast channel capacity of the multiuser OFDM, one has to find the efficient adaptive subchannel and bit allocation among users. In this paper, we propose an 0-1 integer programming model formulating the optimal subchannel and bit allocation problem of the multiuser OFDM. We employ a dual-decomposition method that provides a tight linear programming (LP) relaxation bound. Simulation results are provided to show the effectiveness of the 0-1 integer programming model. MATLAB simulation on a system employing M-ary quardarature amplitude modulation (MQAM) assuming a frequency-selective channel consisting of three independent Rayleigh multi-paths are carried with the optimal subchannel and bit allocation solution generated by 0-1 integer programming model.

Broadband Instantaneous Frequency Measurement System Based on the Dual Paths of the Stimulated Brillouin Scattering Effect

  • Jiahong Zhang;Weijie Liao
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.378-386
    • /
    • 2023
  • A wideband instantaneous frequency measurement (IFM) system is been proposed, designed and analyzed. Phase modulation to intensity modulation conversion is implemented based on the stimulated Brillouin scattering (SBS) effect, and the microwave frequency can be measured by detecting the change in output power. Theoretical analysis shows that the frequency measurement range can be extended to 4fb by adjusting the two sweeping signals of the phase modulators with a difference of 2fb. The IFM system is set up using VPI transmission maker software and the performances are simulated and analyzed. The simulation results show that the measurement range is 0.5-45.96 GHz with a maximum measurement error of less than 9.9 MHz. The proposed IFM system has a wider measurement range than the existing SBS-based IFM system.

Analysis and Control of NPC-3L Inverter Fed Dual Three-Phase PMSM Drives Considering their Asymmetric Factors

  • Chen, Jian;Wang, Zheng;Wang, Yibo;Cheng, Ming
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1500-1511
    • /
    • 2017
  • The purpose of this paper is to study a high-performance control scheme for neutral-point-clamping three-level (NPC-3L) inverter fed dual three-phase permanent magnet synchronous motor (PMSM) drives by considering some asymmetric factors such as the non-identical parameters in phase windings. To implement this, the system model is analyzed for dual three-phase PMSM drives with asymmetric factors based on the vector space decomposition (VSD) principle. Based on the equivalent circuits, PI controllers with feedforward compensation are used in the d-q subspace for regulating torque, where the cut-off frequency of the PI controllers are set at the twice the fundamental frequency for compensating both the additional DC component and the second order component caused by asymmetry. Meanwhile, proportional resonant (PR) controllers are proposed in the x-y subspace for suppressing the possible unbalanced currents in the phase windings. A dual three-phase space vector modulation (DT-SVM) is designed for the drive, and the balancing factor is designed based on the numerical fitting surface for balancing the DC link capacitor voltages. Experimental results are given to demonstrate the validity of the theoretical analysis and the proposed control scheme.

Design and Performance Evaluation of OFDM-CDIM System Using Multiple Modes (다중 모드를 사용하는 OFDM-CDIM 시스템 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.515-522
    • /
    • 2018
  • An orthogonal frequency division multiplexing with coded direct index modulation(OFDM-CDIM) system that can achieve higher performance and spectral efficiency than previous OFDM systems is proposed. Previous OFDM with index modulation(IM) and OFDM-IM using dual modes systems allocate additional data to indices of respective subcarriers through combining operation with high complexity and then transmit them. However, the proposed system directly allocates the mode selection information to each subcarrier without performing additional operations. Then, the system selects and transmits one symbol in the selected mode. Furthermore, only the data allocated to the index of the subcarrier is encoded, and a good performance improvement effect is obtained with a high code rate. Simulation results show quantitatively that an OFDM-CDIM system using four modes improves bit error rate performance and transmission efficiency in additive white Gaussian noise and Rayleigh fading channel environments compared with a conventional OFDM system using 4-ary quadrature amplitude modulation.

Application of the Beam Propagation Method to the analysis of Dual-channel directional couplers (Dual-channel directional couplers 동작특성 해석을 위한 BPM의 적용)

  • Kang, Kyung-Woo;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.660-662
    • /
    • 1993
  • We have numerically analyzed by using the Beam Propagation Method the Dual-channel directional couplers, which peforms a number of useful fuctions in thin-films devices, including power division, modulation, switching, frequency selection, and polarization selection. We also use the effective index method to reduce one dimension.

  • PDF

Dual Mode Buck Converter Capable of Changing Modes (모드 전환 제어 가능한 듀얼 모드 벅 변환기)

  • Jo, Yong-min;Lee, Tae-Heon;Kim, Jong-Goo;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.40-47
    • /
    • 2016
  • In this paper, a dual mode buck converter with an ability to change mode is proposed, which is suitable particularly for portable device. The problem of conventional mode control circuit is affected by load variation condition such as suddenly or slowly. To resolve this problem, the mode control was designed with slow clock method. Also, when change from the PFM(Pulse Frequency Modulation) mode to the PWM(Pulse Width Modulation) mode, to use the counter to detect a high load. And the user can select mode transition point in load range from 20mA to 90mA by 3 bit digital signal. The circuits are implemented by using BCDMOS 0.18um 2-polt 3-metal process. Measurement environment are input voltage 3.7V, output voltage 1.2V and load current range from 10uA to 500mA. And measurement result show that the peak efficiency is 86% and ripple voltage is less 32mV.

A Linear Program Based Heuristic for the Bit and Subchannel Allocation in an OFDM System (OFDM 시스템의 비트 및 부채널 할당을 위한 선형계획법 기반 휴리스틱)

  • Moon, Woosik;Kim, Sunho;Park, Taehyung;Im, Sungbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.67-75
    • /
    • 2013
  • The advantages of the orthogonal frequency division multiplexing (OFDM) are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. To further utilize vast channel capacity of the multiuser OFDM, one has to find the efficient adaptive subchannel and bit allocation among users. In this paper, we compare the performance of the linear programming dual of the 0-1 integer programming formulation with the existing convex optimization approach for the optimal subchannel and bit allocation problem of the multiuser OFDM. Utilizing tight lower bound provided by the LP dual formulation, we develop a primal heurisitc algorithm based on the LP dual solution. The performance of the primal heuristic is compared with MAO, ESA heuristic solutions, and integer programming solution on MATLAB simulation on a system employing M-ary quadrature amplitude modulation (MQAM) assuming a frequency-selective channel consisting of three independent Rayleigh multi-paths.