• 제목/요약/키워드: Dual-Tree Complex Wavelet Transform

검색결과 14건 처리시간 0.023초

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

디지털 영상 처리를 위한 Quincunx 표본화가 사용된 이중 트리 이산 웨이브렛 변환 (Dual-tree Wavelet Discrete Transformation Using Quincunx Sampling For Image Processing)

  • 신종홍
    • 디지털산업정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.119-131
    • /
    • 2011
  • In this paper, we explore the application of 2-D dual-tree discrete wavelet transform (DDWT), which is a directional and redundant transform, for image coding. DDWT main property is a more computationally efficient approach to shift invariance. Also, the DDWT gives much better directional selectivity when filtering multidimensional signals. The dual-tree DWT of a signal is implemented using two critically-sampled DWTs in parallel on the same data. The transform is 2-times expansive because for an N-point signal it gives 2N DWT coefficients. If the filters are designed is a specific way, then the sub-band signals of the upper DWT can be interpreted as the real part of a complex wavelet transform, and sub-band signals of the lower DWT can be interpreted as the imaginary part. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Quincunx lattice yields a non separable 2D-wavelet transform, which is also symmetric in both horizontal and vertical direction. And non-separable wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, non-separable image processing using DDWT services good performance.

효율적인 영상처리를 위한 8방향 컴플렉스 웨이브렛 변환에 관한 연구 (A Study on 8-Directional Complex Wavelet Transform for Efficient Image Processing)

  • 신성;문성룡
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.129-138
    • /
    • 2013
  • 본 논문은 효율적인 영상처리를 위해 방향성 정보를 개선한 이중 트리 컴플렉스 웨이브렛에 관한 연구이다. 이중 트리 컴플렉스 웨이브렛 변환은 이동 불변 성질을 만족하며, 기존 이산 웨이브렛 보다 많은 6개의 방향성 정보를 포함한다. 하지만 간판, 건물과 같은 구조물의 경우 수평 수직 방향 에지 성분들이 많이 포함되어 있어서 6개의 방향성 부대역으로만 영상의 고주파 성분을 모두 표현하기에는 부족하다. 따라서 기존 이중 트리 컴플렉스 웨이브렛 변환의 6개 방향성 부대역 외에 수직 수평($0^{\circ}$, $90^{\circ}$) 부대역을 생성함으로써 우수한 고주파 분리 특성을 갖는 8방향 컴플렉스 웨이브렛 변환 방법을 제안한다. 본 논문에서는 영상의 특성에 따라 다양한 방향성 성분 부대역 생성이 가능하며, 대표적 응용분야인 잡음제거에 활용해 봄으로써 성능을 평가한다.

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구 (A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection)

  • 박성환;김민석;백은서;박정훈
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.36-47
    • /
    • 2023
  • 주요 산업현장에서 설비를 제어하는 산업제어시스템(ICS, Industrial Control System)이 네트워크로 다른 시스템과 연결되는 사례가 증가하고 있다. 또한, 이러한 통합과 함께 한 번의 외부 침입이 전체 시스템 마비로 이루어질 수 있는 지능화된 공격의 발달로, 산업제어시스템에 대한 보안에 대한 위험성과 파급력이 증가하고 있어, 사이버 공격에 대한 보호 및 탐지 방안의 연구가 활발하게 진행되고 있으며, 비지도학습 형태의 딥러닝 모델이 많은 성과를 보여 딥러닝을 기반으로 한 이상(Anomaly) 탐지 기술이 많이 도입되고 있다. 어어, 본 연구에서는 딥러닝 모델에 전처리 방법론을 적용하여 시계열 데이터의 이상 탐지성능을 향상시키는 것에 중점을 두어, 그 결과 웨이블릿 변환(WT, Wavelet Transform) 기반 노이즈 제거 방법론이 딥러닝 기반 이상 탐지의 전처리 방법론으로 효과적임을 알 수 있었으며, 특히 센서에 대한 군집화(Clustering)를 통해 센서의 특성을 반영하여 Dual-Tree Complex 웨이블릿 변환을 차등적으로 적용하였을 때 사이버 공격의 탐지성능을 높이는 것에 가장 효과적임을 확인하였다.

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

Interactive Semantic Image Retrieval

  • Patil, Pushpa B.;Kokare, Manesh B.
    • Journal of Information Processing Systems
    • /
    • 제9권3호
    • /
    • pp.349-364
    • /
    • 2013
  • The big challenge in current content-based image retrieval systems is to reduce the semantic gap between the low level-features and high-level concepts. In this paper, we have proposed a novel framework for efficient image retrieval to improve the retrieval results significantly as a means to addressing this problem. In our proposed method, we first extracted a strong set of image features by using the dual-tree rotated complex wavelet filters (DT-RCWF) and dual tree-complex wavelet transform (DT-CWT) jointly, which obtains features in 12 different directions. Second, we presented a relevance feedback (RF) framework for efficient image retrieval by employing a support vector machine (SVM), which learns the semantic relationship among images using the knowledge, based on the user interaction. Extensive experiments show that there is a significant improvement in retrieval performance with the proposed method using SVMRF compared with the retrieval performance without RF. The proposed method improves retrieval performance from 78.5% to 92.29% on the texture database in terms of retrieval accuracy and from 57.20% to 94.2% on the Corel image database, in terms of precision in a much lower number of iterations.

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

A Novel Image Dehazing Algorithm Based on Dual-tree Complex Wavelet Transform

  • Huang, Changxin;Li, Wei;Han, Songchen;Liang, Binbin;Cheng, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.5039-5055
    • /
    • 2018
  • The quality of natural outdoor images captured by visible camera sensors is usually degraded by the haze present in the atmosphere. In this paper, a fast image dehazing method based on visible image and near-infrared fusion is proposed. In the proposed method, a visible and a near-infrared (NIR) image of the same scene is fused based on the dual-tree complex wavelet transform (DT-CWT) to generate a dehazed color image. The color of the fusion image is regulated through haze concentration estimated by dark channel prior (DCP). The experiment results demonstrate that the proposed method outperforms the conventional dehazing methods and effectively solves the color distortion problem in the dehazing process.

Fast and Efficient Satellite Imagery Fusion Using DT-CWT Proportional and Wavelet Zero-Padding

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.517-526
    • /
    • 2015
  • Among the various image fusion or pan-sharpening methods, those wavelet-based methods provide superior radiometric quality. However, the fusion processing is not only simple but also flexible, since many low- and high-frequency sub-bands are often produced in the wavelet domain. To address this issue, a novel DT-CWT (Dual-Tree Complex Wavelet Transform) proportional to the fusion method by a WZP (Wavelet Zero-Padding) is proposed. The proposed method produces a single high-frequency image in the spatial domain that is injected into the LRM (Low-Resolution Multispectral) image. Thus, a wavelet domain fusion can be simplified to spatial domain fusion. In addition, in the proposed DT-CWTP (DT-CWT Proportional) fusion method, it is unnecessary to decompose the LRM image by adopting WZP. The comparison indicates that the proposed fusion method is nearly five times faster than the DT-CWT with SW (Substitute-Wavelet) fusion method, meanwhile simultaneously maintaining the radiometric quality. The conducted experiments with WorldView-2 satellite images demonstrated promising results with the computation efficiency and fused image quality.