• Title/Summary/Keyword: Dual-Resonant

Search Result 161, Processing Time 0.029 seconds

High Frequency Dual Mode Control LLC Resonant Converter with Wide Input Voltage Range (넓은 입력전압범위의 고주파수 구동 Dual mode control LLC 공진형 컨버터)

  • Joo, Hyung-Ik;Yang, Jung-Woo;Jo, Kang-Ta;Han, Sang-Kyoo;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • In this paper, a high-frequency dual mode control LLC resonant converter with wide input voltage range is proposed through zero voltage switching (ZVS) under the universal line input voltage and every load conditions. Conventional small power adapter driving should be satisfied with universal line input voltage because it has no power factor correction circuit regulation. The conventional LLC resonant converter for an adapter can reduce the size of transformer in terms of high-frequency driving and ZVS. However, this converter has a disadvantage in terms of design of resonant tank under various input voltages because the frequency modulation range is very wide to satisfy voltage conversion gain. Compared with the conventional one, the proposed LLC converter can be adapted to universal line input voltage and high-frequency driving because it is controlled by pulse width modulation and pulse frequency modulation with control voltage. The validity of the proposed LLC converter is proved through the 60 W prototype.

Selective Dual Duty Cycle Controlled High Frequency Inverter Using a Resonant Capacitor in Parallel with an Auxiliary Reverse Blocking Switch

  • Saha, Bishwajit;Suh, Ki-Young;Kwon, Soon-Kurl;Mishima, Tomokazu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.118-123
    • /
    • 2007
  • This paper presents a new ZCS-PWM high frequency inverter. Zero current switching operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. Dual duty cycle control scheme is used to provide a wide range of high frequency AC output power regulation that is important in many high frequency inverter applications. It found that a complete soft switching operation can be achieved even for low power setting ranges by introducing high-frequency dual duty cycle control scheme. The proposed high frequency inverter is more suitable for consumer induction heating(IH) applications. The operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

Frequency and Amplitude Control of Micro Resonant Sensors (마이크로 공진형 센서의 주파수 및 진폭 제어)

  • Park, Sung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.

The Analysis of Dual Resonant Iris for Designing Waveguide Band-Pass Filter (대역 통과 도파관 여파기 설계를 위한 이중 공진 아이리스 해석)

  • Choi, Jin-Young;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.904-911
    • /
    • 2011
  • This paper deals with transmission characteristics of a new dual resonant structure for designing waveguide band-pass filter. The structure which has a pass-band between two adjacent stop-bands in a single body consists of circular ridged aperture and four armed conducting patch. The dual resonant behavior of the structure can be represented by a combination of LC series and parallel resonant circuits. Also these resonant properties can be easily controlled by varying the geometry of the aperture and four armed conducting patch. Actually, the structure is fabricated on the microstrip substrate by use of etching technique so that it is formed an iris type resonator which can be easily put into the transverse plane of the waveguide. We use WR-90 standard waveguide, adapters, and VNA(vector network analyzer) to measure the resonant characteristics of the structure. It is very useful to design and to improve the cutoff skirts characteristics in the waveguide band-pass filter design area.

DUAL DUTY CYCLE CONTROLLED SOFT-SWITCHING HIGH FREQUENCY INVERTER USING AUXILIARY REVERSE BLOCKING SWITCHED RESONANT CAPACITOR

  • Bishwajit, Saha;Suh, Ki-Young;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.129-131
    • /
    • 2006
  • This paper presents a new ZVS-PWM high frequency inverter. The ZVS operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. The operating principle and the operating characteristics of the new high frequency circuit treated here are illustrated and evaluated on the basis of simulation results. It was examined that the complete soft switching operation can be achieved even for low power setting ranges by introducing the high frequency dual duty cycle control scheme. In the proposed high frequency inverter treated here, the dual mode pulse modulation control strategy of the asymmetrical PWM in the higher power setting ranges and the lower power setting ones, the output power of this high frequency inverter could introduce in order to extend soft switching operation ranges. Dual duty cycle is used to provide a wide range of output power regulation that is important in many high frequency inverter applications. It is more suitable for induction heating applications the operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

  • PDF

Modified Dual-Buck Inverter Based on Resonant Link

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1421-1428
    • /
    • 2015
  • The efficiency and reliability of the dual-buck inverter (DBI) were greatly improved by eliminating the shoot-through problem and optimally designing the freewheeling diode. The traditional DBI suffers from large harmonic components with low output voltage and large capacity output filter inductor. To overcome the aforementioned disadvantages, a modified DBI (MBDI) was proposed by adopting a quasi-resonant link and pulse density modulation (PDM). This paper first introduces the working principle of the MBDI and PDM, and then the selection principle of system parameters is presented. Finally, a mathematical model of the MBDIis built, and an experiment prototype is set up. Simulation and experimental results verify the correctness of the theoretical analysis and the feasibility of the scheme.

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

High Efficiency Switch Mode Line Transformer (SMLT) Composed of Load Sharing Dual Modules (부하평형 듀얼 모듈로 구성된 고효율 스위치 모드 라인 트랜스포머(SMLT))

  • Kim, Jin-Hong;Yang, Jung-Woo;Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.188-194
    • /
    • 2020
  • This paper presents a high-efficiency Switch Mode Line Transformer (SMLT) composed of load-shared dual modules, which is based on the AC/AC LLC resonant converter. Given that the conventional adaptor is usually composed of two power stages, namely, the PFC and DC/DC converters, its system size can be increased according to the output power. However, given that the proposed SMLT can separate the PFC converter from the adaptor, the size reduction of the system can be achieved. Meanwhile, the SMLT with a single module has the limit of the size reduction because of a high resonant current. Thus, it can be configured with dual or multiple modules to reduce the resonant current. Then, their load sharing can be guaranteed by only the proposed transformer structure without an extra current controller. The validity of the proposed converter is proven through a 850-W prototype.