• Title/Summary/Keyword: Dual-Resonance Antenna

Search Result 62, Processing Time 0.016 seconds

Development of Quad-Band Printed Monopole Antenna Using Coupling Effect of Dual Rectangular Rings and L-Slots on the GND (이중 사각 링 패치 결합효과와 접지면 L-슬롯을 이용한 4중 대역 인쇄형 모노폴 안테나 개발)

  • Shin, Yong-Jin;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1040-1049
    • /
    • 2014
  • In this paper, a quad-band antenna for DCS1800, PCS1900, WCDMA, WLAN and Mobile WiMAX application is proposed. The proposed antenna is a printed monopole structure, and consists of two rectangular ring-shaped radiating patches on the front side and two different size of L-shaped slots on the back side(ground plane). Two rectangular ring radiation patches are respectively resonant at 2 GHz and 3.5 GHz bands, and additional resonance is occurred at 5.3 GHz by the coupling effect between two ring patches. In addition, the optimized matching characteristic is obtained by controlling the gaps. Also, by adding two L-slots on the ground plane, additional resonant frequency band of 5.6 GHz is occurred. Finally the measured bandwidths of the proposed antenna below -10 dB return loss are 1,200 MHz(1.6~2.8 GHz), 800 MHz(3.2~4.0 GHz), 300 MHz(5.14~5.44 GHz), and 690 MHz(5.56~6.25 GHz). The radiation patterns have the omni-directional characteristic, and the measured antenna average gains at resonant bands are 0.86~4.07 dBi.

Design of a Double-Faced Monopole Antenna Using the Coupling Effect of Induced Currents (유도 전류의 커플링 효과를 이용한 모노폴 안테나 설계)

  • Choi, Young;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1327-1336
    • /
    • 2012
  • In this paper, the dual-faced monopole antenna, which is arranged by numerous rectangular ring patches in sequence for the multi-bands is proposed. The ring type structure of the patch can be increased the bandwidth. Therefore the bandwidth and beam width are improved by using multiple arrayed patches. When the ring type patches are inserted serially, the resonance frequencies are occurred by the current flow from the first ring patch. It is possible because the gap between the patches is very narrow. In addition, if the patches are composed on the same plane as the feed-line, fabrication could be very difficult because the gap between the patches is extremely narrow. The thickness and permittivity of the antenna, moreover, are very important parameters because both sides of the substrate are used. We finally found the optimal thickness and permittivity to generate the coupling effect by simulation. All patches are consisted of 4-steps which the patch size was decreased 85 % by each step. In conclusion, the resonant frequency bands are 1.75~2.6 GHz(850 MHz), 3.24~3.46 GHz(220 MHz), 3.8~4.0 GHz(200 MHz), and 4.4~4.9 GHz(500 MHz).