• Title/Summary/Keyword: Dual-Polarized

Search Result 111, Processing Time 0.027 seconds

On the Utilization of Polarization Dependency Acquired by an Intentionally Misaligned Antenna Array for Mitigation of GPS Jammers

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, the dual-polarized antenna array has drawn attention due to the dependency of its signal processing gain on the signal polarization. Even though this polarization dependency makes it possible to mitigate a non-right-hand circularly polarized (non-RHCP) jamming signal from the same direction as a GPS signal, the dual-polarized antennas are not yet widely used for various applications. This study suggests a method that can acquire the polarization dependency of the signal-processing gain by intentionally misaligning antenna elements in a single-polarized antenna array. The simulation results show that the proposed method can successfully mitigate a non-RHCP jammer from the same direction as a GPS signal as if a dual-polarized antenna array does and provide comparable signal-to-jammer-plus-noise ratio (SJNR) performance with a completely aligned single-polarized antenna array and a dual-polarized antenna array.

Performance Analysis of GPS Anti-Jamming Method Using Dual-Polarized Antenna Array in the Presence of Steering Vector Errors

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2020
  • The antenna arrays are known to be effective for GPS anti-jamming and the performance can be improved further if a dual-polarized antenna array is used. However, when the Minimum Variance Distortionless Response (MVDR) beamformer is used as a signal processing algorithm for the dual-polarized antenna array, the anti-jamming performance can degrade in the presence of errors in the steering vector that is a key factor of the MVDR beamformer. Therefore, in this paper, the effect of the steering vector error on the anti-jamming performance of the dual-polarized antenna array is analyzed by simulations and the result is compared to that of the single-polarized antenna array.

Maximum Ratio Transmission for Space-Polarization Division Multiple Access in Dual-Polarized MIMO System

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3054-3067
    • /
    • 2015
  • The phenomena of higher channel cross polarization discrimination (XPD) is mainly observed for future wireless technologies such as small cell network and massive multiple-input multiple-output (MIMO) system. Therefore, utilization of high XPD is very important and space-polarization division multiple access (SPDMA) with dual-polarized MIMO system could be a suitable solution to high-speed transmission in high XPD environment as well as reduction of array size at base station (BS). By SPDMA with dual-polarized MIMO system, two parallel data signals can be transmitted by both vertically and horizontally polarized antennas to serve different mobile stations (MSs) simultaneously compare to conventional space division multiple access (SDMA) with single-polarized MIMO system. This paper analyzes the performance of SPDMA for maximum ratio transmission (MRT) in time division duplexing (TDD) system by proposed dual-polarized MIMO spatial channel model (SCM) compare to conventional SDMA. Simulation results indicate that how SPDMA utilizes the high XPD as the number of MS increases and SPDMA performs very close to conventional SDMA for same number of antenna elements but half size of the array at BS.

Circularly Rotated Array for Dual Polarized Applicator in Superficial Hyperthermia System

  • Kim, Ki Joon;Choi, Woo Cheol;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • A circularly rotated array for a dual polarized applicator in a superficial hyperthermia system is proposed. The applicator has a wider effective treatment area due to the $180^{\circ}$ phase shift. The dual polarized circularly rotated array (DPCRA) suppresses overheating at the center of the array and helps evenly distribute the heat. This array provides a more effective treatment area than a lattice array when a $2{\times}2$ dual polarized array is fitted to the treatment area. The treatment area is 71.5% of the aperture, whereas the effective treatment areas of the $2{\times}2$ dual polarized lattice array (DPLA) and the single polarized array (SPA) are 57.2% and 38.6% of the same aperture, respectively. The measurement matches the simulation results without blood circulation effects. In a $2{\times}2$ array applicator, the proposed DPCRA has more heat uniformity than the DLA and the SPA.

Structure of Dual Polarized System for Wireless Communication (무선 통신을 위한 이중 편파 시스템 구조)

  • Kim, Jaekil;Gwak, Gye Seok;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.746-755
    • /
    • 2014
  • In this paper, we propose the structure of a dual polarized system for a wireless communication. The proposed dual polarized antenna is formed by one vertical antenna and two horizontal antennas that are orthogonal to each other. Vertical and horizontal polarized antennas transmit different signals, but two orthogonal horizontal polarized antennas transmit the same data signals. So, the signals of the proposed dual polarized system construct two dual-polarization planes. And, only one dual-polarization plane with a large signal power is selected at the side of a receiver. The simulation results show that the proposed dual polarized system could obtain a higher capacity compared to an ordinary $2{\times}2$ MIMO (Multi-input Multi-output) system.

Physical Layer Security Scheme Based on Polarization Modulation and WFRFT Processing for Dual-polarized Satellite Systems

  • Luo, Zhangkai;Wang, Huali;Zhou, Kaijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5610-5624
    • /
    • 2017
  • A novel scheme based on polarization modulation and the weighted fractional Fourier transform (PM-WFRFT) is proposed in this paper to enhance the physical layer security of dual-polarized satellite systems. This scheme utilizes the amplitude and phase of the carrier as information-bearing parameters to transmit the normal signal and conceals the confidential information in the carrier's polarization state (PS). After being processed by WFRFT, the characteristics of the transmit signal (including amplitude, phase and polarization state) vary randomly and in nearly Gaussian distribution. This makes the signal very difficult for an eavesdropper to recognize or capture. The WFRFT parameter is also encrypted by a pseudo-random sequence and updated in real time, which enhances its anti-interception performance. Furthermore, to prevent the polarization-based impairment to PM-WFRFT caused by depolarization in the wireless channel, two components of the polarized signal are transmitted respectively in two symbol periods; this prevents any mutual interference between the two orthogonally polarized components. Demodulation performance in the system was also assessed, then the proposed scheme was validated with a simulated dual-polarized satellite system.

Dual-Polarized Annular Ring Patch Antenna for 2.4 GHz Doppler Radar

  • Kim, Seong-Ho;Yook, Jong-Gwan;Cho, Sung-Ho;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.183-185
    • /
    • 2010
  • A 2.4 GHz dual-polarized antenna for a Doppler radar is studied. The proposed dual-polarized antenna using a stacked annular ring patch with two co-centric gap-coupled feed lines and a $90^{\circ}$ hybrid exhibits fairly good performance of 22 dB isolation at a center frequency of 2.4 GHz. Using a $90^{\circ}$ hybrid, a right-handed circular polarization for the transmitter and a left-handed circular polarization for the receiver are implemented. The gain of the designed antenna is about 0 dBi over operating frequencies. The antenna size including a ground plane is only $40{\times}40\;mm^2$.

Multi-User Transmission Exploiting Multiple Dual-Polarized Antennas (이중 편파 다중 안테나를 이용한 다중 사용자 전송)

  • Shin, Changyong;Park, Youn Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.774-776
    • /
    • 2014
  • In this paper, we propose a multiple dual-polarized antenna system for multi-user transmission in line-of-sight (LoS) dominant channel environments. By exploiting space and polarization resources efficiently, the proposed system achieves a higher sum rate than the existing multi-user multiple input multiple output (MU-MIMO) system with uni-polarized antennas.

ANALYSIS ON THE INFLUENCE OF XPD IN DUAL-POLARIZED TRANSMISSION

  • Park, Durk-Jong;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.784-787
    • /
    • 2006
  • Dual-polarized transmission is one of the effective methods to transmit such a high speed data thanks to two independent channel leads to the orthogonal feature between RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). However, in practical case, the transmitted signal by RHCP polarized antenna in satellite can be occurred at the output port of LHCP polarized antenna in ground station, vice versa. XPD (Cross-Polarization Discrimination) is the ratio of the signal level at the output of a receiving antenna that is nominally co-polarized to the transmitting antenna to the output of a receiving antenna of the same gain but nominally orthogonally polarized to the transmitting antenna. In this paper, the detailed estimation of XPD within the interface between satellite and ground station is written and the influence of XPD to link performance is also described.

  • PDF

Design of Dual-Polarized Monopulse Cassegrain Antenna for W-Band Millimeter-Wave Seeker (W-대역 탐색기용 이중편파 모노펄스 카세그레인 안테나 설계)

  • Lee, Kook Joo;Jung, Chae-Hyun;Baek, Jong-Gyun;Park, Chang-Hyun;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2016
  • In this paper, dual-polarized monopulse cassegrain antenna for W-band millimeter-wave seeker was proposed and the performances were verified by the measured results of the fabricated antenna. Dual-polarized monopulse Cassegrain antenna consists of main/subreflector, dual-polarized feed horn and monopulse comparator. The proposed feed horn has $2{\times}2$ array square waveguide feeding structure to make monopulse signals and it was designed using 90 degree rotational symmetric structure to receive dual-polarized signals. At the sum and difference channel, the measured vertical and horizontal polarization radiation pattern were similar. Measurement gains are 35.1 dBi for v-pol. and 35.6 dBi for h-pol. at the center frequency with 0.5dBi difference between each polarization and the side lobe level is below -21.6 dB.