• Title/Summary/Keyword: Dual-Energy Technique

Search Result 82, Processing Time 0.032 seconds

A Study on the X-Ray Imaging using Dusl Energy Method (이중에너지 방법을 이용한 X선 영상법에 관한 연구)

  • 신동익;김종효
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.185-194
    • /
    • 1988
  • The dual-energy technique win used to separate the bone-only and tissue-only images from the conventional chest images. The equivalent thickness of the basic materials are estimated from low and high energy images of a given complex materials using the attenuation coefficient of ma serial componens. We showed that the image quality of dual-energy imaging method can be influenced by the ponlinearity and noise components of system and spectrum distributions The quantitative analysis of Calcium component was performed by dual-energy technique and it is shown that the concentration of the Calcium could be accurately estimated within 5% error range.

  • PDF

Cost-effective Single Board PDP Sustaining Driver with Dual Resonant Method

  • Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • A new plasma display panel sustaining driver using single side sustaining technique with a dual resonant method is proposed in this paper. Since this circuit enables to keep device voltage stress same as the prior circuit, it can be a low cost circuit compared to a conventional driver. To integrate the sustaining function into one side with a single power source in the driver, a charge pump method is adopted to make negative sustaining voltage and to achieve dual resonant energy recovery on the sustaining modes.

Multispectral X-ray imaging to distinguish among dental materials

  • Peter, Ann-Christin;Schnaubelt, Matthias;Gente, Michael
    • Imaging Science in Dentistry
    • /
    • v.47 no.4
    • /
    • pp.247-254
    • /
    • 2017
  • Purpose: Dual-energy X-ray imaging is widely used today in various areas of medicine and in other applications. However, no similar technique exists for dental applications. In this study, we propose a dual-energy technique for dental diagnoses based on voltage-switching. Materials and Methods: The method presented in this study allowed different groups of materials to be classified based on atomic number, thereby enabling two-dimensional images to be colorized. Computer simulations showed the feasibility of this approach. Using a number of different samples with typical biologic and synthetic dental materials, the technique was applied to radiographs acquired with a commercially available dental X-ray unit. Results: This technique provided a novel visual representation of the intraoral environment in three colors, and is of diagnostic value when compared to state-of-the-art grayscale images, since the oral cavity often contains multiple permanent foreign materials. Conclusion: This work developed a technique for two-dimensional dual-energy imaging in the context of dental applications and showed its feasibility with a commercial dental X-ray unit in simulation and experimental studies.

Material Decomposition through Weighted Image Subtraction in Dual-energy Spectral Mammography with an Energy-resolved Photon-counting Detector using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 광자계수검출기 기반 이중에너지 스펙트럼 유방촬영에서 가중 영상 감산법을 통한 물질분리)

  • Eom, Jisoo;Kang, Sooncheol;Lee, Seungwan
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.443-451
    • /
    • 2017
  • Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

Feasibility of Single-Shot Dual-Energy X-ray Imaging Technique for Printed-Circuit Board Inspection (인쇄회로기판 검사를 위한 단일조사 이중에너지 엑스선 영상기법의 유용성에 관한 연구)

  • Kim, Seung Ho;Kim, Dong Woon;Kim, Daecheon;Kim, Junwoo;Park, Ji Woong;Park, Eunpyeong;Kim, Jinwoo;Kim, Ho Kyung
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • A single-shot dual-energy x-ray imaging technique has been developed using a sandwich detector by stacking two detectors, in which the front and rear detectors respectively produce relatively lower and higher x-ray energy images. Each detector layer is composed of a phosphor screen coupled with a photodiode array. The front detector layer employs a thinner phosphor screen, whereas the rear detector layer employs a thicker phosphor screen considering the quantum efficiency for x-ray photons with higher energies. We have applied the proposed method into the inspection of printed circuit boards, and obtained dual-energy images with background clutter suppressed. In addition, the single-shot dual-energy method provides sharper-edge images than the conventional radiography because of the unsharp masking effect resulting from the use of different thickness phosphors between the two detector layers. It is promising to use the single-shot dual-energy x-ray imaging for high-resolution nondestructive testing. For the reliable use of the developed method, however, more quantitative analysis is further required in comparisons with the conventional method for various types of printed circuit boards.

Cost-effective single board PDP sustaining driver with dual resonant method

  • Lim, Hyun-Muk;Eom, Cheol-Hwan;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.446-448
    • /
    • 2008
  • A new plasma display panel sustaining driver using single side sustaining technique with the dual resonant method is proposed. Since this circuit enables to reduce switches in energy recovery circuit with keeping voltage stress like that of prior circuit, it can be low cost circuit comparing with a conventional driver. To integrate sustain function into one side with single power source in the driver, a charge pump method is adopted to make negative sustaining voltage and achieve dual resonant energy recovery on sustaining modes.

  • PDF

Assessment of Image Quality of Dual Energy 256 MDCT Technique Focused on keV Changes for MCA Stroke in Cerebral Angiography : Single Energy CT Standard Reference Mode (뇌혈관 조영 검사 시 중대뇌동맥 뇌졸중에 대한 keV 변화를 중심으로 이중 에너지 256 MDCT 기법의 영상의 질 평가 : 단일에너지 CT 표준방식)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.961-968
    • /
    • 2019
  • The purpose of this study was to evaluate the usefulness of cerebral angiography in each energy level by using dual energy technique in CT. Methods were performed on 15 DE images and SE images of CT angiography. For the analysis of images, mean value, standard deviation, SNR and CNR value were determined by setting ROI on MCA, brain parenchyma tissue, and back ground. As a result of concurrent visual evaluation with Likert 5 point scale, the clearest MCA image was confirmed at DE 40 keV and SE 120 kVp(p>0.05). The SNR value of the SE image was measured to be similar to the 40 keV energy level of the DE image. The low energy level image of 40 keV and 50 keV was measured with a high SNR and the contrast ratio was higher than that of the high energy image.

Study on Optimum Contrast Medium Quantity during Abdominal CT using Dual Energy Technique (복부 CT 검사 시 이중에너지 기법을 통한 적정한 조영제 양에 관한 연구)

  • Kang, Min;Choi, Namgil;Han, Jaebok;Kim, Wook;Jang, Yeongill;Song, Jongnam
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The purpose of this study is finding optimum contrast medium quantity during abdominal CT using dual energy technique. The study subjects are 30 patients who had received general single energy abdominal CT and received double energy technique follow-up abdominal CT. dual energy technique abdominal CT images were obtained after setting contrast medium quantities at 30%, 40%, 50%, 60% and 70% of contrast medium quantity at the time of single energy technique. Then the contrast enhancement (Hounsfield Unit; HU) was estimated by setting-up the regions of interest at aorta, inferior vena cava, hepatic portal vein and hepatic parenchymal. The obtained values were compared to the values of the same parts measured during single energy technique abdominal CT. The results of the study were as following. The 60% set up group had HU in aorta : $210.80{\pm}13.609$, IVC : $190.40{\pm}25.215$, hepatic portal vein : $198.40{\pm}21.232$ and hepatic parenchymal : $119.20{\pm}7.98$, The single energy abdomianl CT images had HU in aorta : $205.40{\pm}16.426$, IVC : $188.20{\pm}21.476$, hepatic portal vein : $195.40{\pm}22.744$ and hepatic parenchymal : $121.00{\pm}6.595$. Therefore, it is possible to obtain contrast enhancement by dual energy technique abdominal CT similar to the same by single energy technique abdominal CT by setting-up the quantity of contrast medium at 60% of contrast medium at the time of single energy technique abdominal CT. Based on the result of this study, it is possible to decrease existing quantity of contrast medium by _% and the injection velocity can be also decreased. Accordingly, it is believed that the result of study would be quite useful for patients who have renal function disorder, weak vein or side effect of contrast medium in the past.

A 12 bit 750 kS/s 0.13 mW Dual-sampling SAR ADC

  • Abbasizadeh, Hamed;Lee, Dong-Soo;Yoo, Sang-Sun;Kim, Joon-Tae;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.760-770
    • /
    • 2016
  • A 12-bit 750 kS/s Dual-Sampling Successive Approximation Register Analog-to-Digital Converter (SAR ADC) technique with reduced Capacitive DAC (CDAC) is presented in this paper. By adopting the Adaptive Power Control (APC) technique for the two-stage latched type comparator and using bootstrap switch, power consumption can be reduced and overall system efficiency can be optimized. Bootstrapped switches also are used to enhance the sampling linearity at a high input frequency. The proposed SAR ADC reduces the average switching energy compared with conventional SAR ADC by adopting reduced the Most Significant Bit (MSB) cycling step with Dual-Sampling of the analog signal. This technique holds the signal at both comparator input asymmetrically in sample mode. Therefore, the MSB can be calculated without consuming any switching energy. The prototype SAR ADC was implemented in $0.18-{\mu}m$ CMOS technology and occupies $0.728mm^2$. The measurement results show the proposed ADC achieves an Effective Number-of-Bits (ENOB) of 10.73 at a sampling frequency of 750 kS/s and clock frequency of 25 MHz. It consumes only 0.13 mW from a 5.0-V supply and achieves the INL and DNL of +2.78/-2.45 LSB and +0.36/-0.73 LSB respectively, SINAD of 66.35 dB, and a Figures-of-Merit (FoM) of a 102 fJ/conversion-step.