• Title/Summary/Keyword: Dual rate

Search Result 813, Processing Time 0.029 seconds

Characteristics of Dual Transverse Injection in Supersonic Flow Fields II-Combustion Characteristics (초음속 유동장 내 이중 수직분사의 특성에 관한 연구 II-연소특성)

  • Shin, Hun-Bum;Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.61-68
    • /
    • 2002
  • Combustion characteristics of dual transverse injection of hydrogen in supersonic air flows were studied using computational methods. Three-dimensional Navier-Stokes with a non-equilibrium chemical reaction model and the k-$\omega$ SST turbulence model were used. A parametric study was conducted with the variation of the distance between two injectors. Combustion characteristics of dual injection are very different from those of single injection. The combustion characteristics of two injection flows are very different from each other, and the ignition and combustion characteristics of the rear injection flow are strongly influenced by those of the front injection flow. The increase of the distance between two injectors up to a specific distance results in the increase of burning rate. However, the increase of the distance over the specific distance gives no increase of burning rate but makes more losses of stagnation pressure. From the results it can be stated that there exists a distance between two injectors for optimum combustion characteristics.

Infinite Selectivity Etching Process of Silicon Nitride to ArF PR Using Dual-frequency $CH_2F_2/H_2/Ar$ Capacitively Coupled Plasmas (Dual-frequency $CH_2F_2/H_2/Ar$ capacitively coupled plasma를 이용한 실리콘질화물과 ArF PR의 무한 선택비 식각 공정)

  • Park, Chang-Ki;Lee, Chun-Hee;Kim, Hui-Tae;Lee, Nae-Eung
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.137-141
    • /
    • 2006
  • Process window for infinite etch selectivity of silicon nitride $(Si_3N_4)$ layers to ArF photoresist (PR) was investigated in dual frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters such as low frequency power $(P_{LF})$, $CH_2F_2$ and $H_2$ flow rate in $CH_2F_2/H_2/Ar$ plasma. It was found that infinite etch selectivities of $Si_3N_4$ layers to the ArF PR on both blanket and patterned wafers can be obtained for certain gas flow conditions. The etch selectivity was increased to the infinite values as the $CH_2F_2$ flow rate increases, while it was decreased from the infinite etch selectivity as the $H_2$ flow rate increased. The preferential chemical reaction of the hydrogen with the carbon in the polymer film and the nitrogen on the $Si_3N_4$ surface leading to the formation of HCN etch by-products results in a thinner steady-state polymer and, in turn, to continuous $Si_3N_4$ etching, due to enhanced $SiF_4$ formation, while the polymer was deposited on the ArF photoresist surface.

Effects of Microstructure on the Fatigue Crack Propagation Resistance in Dual Phase Steel (複合組織鋼 의 피勞균열進展抵抗 에 미치는 微視組織 의 영향)

  • 김정규;황돈영;박승락
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 1984
  • In this study, martensite-ferrite dual phase steel composed of martensite in hard phase and ferrite in soft phase is made as model material, and the difference of fatigue crack propagation behavior resulted from the structural size is investigated by fracture mechanics and microstructural method. The main results obtained are as follows; 1)Fatigue crack propagation rate is influenced by ferrite grain size. In other words, in the low .DELTA. K region fatigue crack propagation rate is decreased with decreasing of grain size but the difference of propagation rate resulted from the structural size is decreased as .DELTA.K is increased. 2)The above result is explained by the degree of crack arrest effect of second phase for fatigue crack propagation depending on the ratio of reversed plastic zone size to ferrite grain size.

Online Education System for Work Based Learning Dual System (일-학습 병행을 위한 온라인 교육 시스템)

  • Kwon, Oh-Young
    • Journal of Practical Engineering Education
    • /
    • v.5 no.2
    • /
    • pp.163-168
    • /
    • 2013
  • The vicious cycle of over-education has been made. That is, higher education enrollment rate is high, but university graduate employment rate is low. To eliminate this cycle and relieve youth unemployment and young people to enter the labor market early, dual education and training system is needed. This dual system can support working and learning in parallel. So, worker can get the opportunity pre-employment and post-learning and improve his/her job skills. Recent MOOC (Massive Open On-line Course), a new form of online education system, has emerged. MOOC combines education, entertainment and social networking, and emphasize the interaction between faculty and student and between students. The educational contents of MOOC are available free of charge. Using newly changed online education environments we can effectively provide knowledge and skills. In technology and engineering education hands-on training is necessary. In order to support work based learning dual system for worker to work and learn in parallel, we should build the multi-learning system to combine the online education and campus hands-on practice.

Reliability Analysis of Dual-Channel CAN bus for Submarine Combat System (잠수함 전투체계를 위한 이중채널 CAN 버스의 신뢰도 분석)

  • Song, Moogeun;Kim, Eunro;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1170-1178
    • /
    • 2013
  • Thanks to various benefits, low-cost real-time communication networks so called fieldbus have been widely used in many industrial applications including military systems, such as aircrafts, submarines, and robots. This paper presents a reliability analysis of dual-channel CAN(Controller Area Network) fieldbus which is used for controlling various equipment of submarine combat system. A submarine combat system playing a critical role to the success of missions and survivability consists of various devices including sensors/actuators and computers. Since a communication network for submarine combat system must satisfy an extremely high level of reliability, a dual channel technique is commonly adopted. In this paper, a Petri Net based reliability model for dual-channel CAN is discussed. A reliability model called generalized stochastic Petri Nets (GSPN) is built by utilizing the information on physical faults with CAN. The effectiveness of the proposed model is analyzed in terms of unreliability with respect to failure rate and repair rate.

A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel (Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가)

  • Kim, Deok-Geun;Cho, Dong-Pil;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.

S/W Watch-Dog method between dual CPU using different OS (이종 OS로 구동되는 Dual CPU 기반에서의 S/W Watch-Dog 기법)

  • You, Young-Eel;Chon, Byoung-Sil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • This paper proposes S/W Watch-Dog method between Dual CPU using the different OS. The proposed watch-dog method performs that it distinguishes the status of channel between dual CPU and status of processor itself. We find out the ideal value of threshold and priority for load test task. and we evaluate the accuracy of the proposed S/W Watch-Dog Method at the result of evaluation. We figure out that the accuracy of proposed method is higher than the accuracy of general S/W Watch-Dog Method in case of variable data rate. Therefore we confirm that the proposed Method has high accuracy of watch-dog function with the ideal value of threshold and priority for load test task through the performance evaluation.

A Dual Modeling Method for a Real-Time Palpation Simulator

  • Kim, Sang-Youn;Park, Se-Kil;Park, Jin-Ah
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • This paper presents a dual modeling method that simulates the graphic and haptic behavior of a volumetric deformable object and conveys the behavior to a human operator. Although conventional modeling methods (a mass-spring model and a finite element method) are suitable for the real-time computation of an object's deformation, it is not easy to compute the haptic behavior of a volumetric deformable object with the conventional modeling method in real-time (within a 1kHz) due to a computational burden. Previously, we proposed a fast volume haptic rendering method based on the S-chain model that can compute the deformation of a volumetric non-rigid object and its haptic feedback in real-time. When the S-chain model represents the object, the haptic feeling is realistic, whereas the graphical results of the deformed shape look linear. In order to improve the graphic and haptic behavior at the same time, we propose a dual modeling framework in which a volumetric haptic model and a surface graphical model coexist. In order to inspect the graphic and haptic behavior of objects represented by the proposed dual model, experiments are conducted with volumetric objects consisting of about 20,000 nodes at a haptic update rate of 1000Hz and a graphic update rate of 30Hz. We also conduct human factor studies to show that the haptic and graphic behavior from our model is realistic. Our experiments verify that our model provides a realistic haptic and graphic feeling to users in real-time.

Study on Internal Ballistic Performance Analysis for Single-chamber Dual-thrust Rocket Motors (단일연소관 이중추력 로켓모터의 내탄도성능 분석법 연구)

  • Kwon, Hyeokmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, study on the internal ballistic analysis method for single-chamber dual-thrust rocket motors meeting a dual-thrust profile requirement by tailoring the grain burning area is presented. The analysis method, which can acquire variables required for the performance prediction, considering gradual change of burning rate correction factor and specific impulse in the transition phase, is proposed. Improvements compared to the analysis method in the previous study, which do not consider change in the transition phase, are verified through comparison between the newly proposed method and the method in the previous study. Internal ballistic variables are obtained for four different ground firing test conditions using the proposed method, and the performance prediction for each condition is conducted using these variables. These prediction results and the ground test data are in good agreement, so it is confirmed that the performance prediction of dual-thrust motors with same design geometries based on the proposed analysis method is available.