• Title/Summary/Keyword: Dual Thrust

Search Result 53, Processing Time 0.026 seconds

A Study on Dual Thurst Solid Rocket Motors with High/Low Burning Rate Propellants (이중추력형 추진기관 개발 기초연구)

  • Song, Jong-Kwon;Lee, Jun-Ho;Choi, Sung-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.664-667
    • /
    • 2010
  • Solid rocket propulsion systems are generally used for tactical missiles due to the structural and operational simplicity. Nevertheless, various kinds of design factors including outer diameter, length, weight, loading efficiency of propellant grain effects to thrust performance. Dual thrust is beneficial to range extension and terminal velocity increasement. But loading efficiency becomes low in case to obtain dual thrust performance by burning surface control. So, It is predicted to be reasonable to obtain dual thrust performance with high/low burning rate propellants. This study is on internal ballistic analysis and ground test to confirm dual thrust performance.

  • PDF

Study on Fluidic Thrust Vector Control Based on Dual-Throat Concept (이중목 노즐 개념에 기반한 유체 추력벡터제어에 관한 연구)

  • Wu, Kexin;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.24-32
    • /
    • 2019
  • Numerical simulations were carried out in a supersonic nozzle to investigate the possibility of using dual-throat nozzle concept in fluidic thrust vector control. Validation of the methodology showed an excellent agreement between the computational fluid dynamics results and the experimental data available, which were based on the well-assessed SST $k-{\omega}$ turbulence mode. The deflection angle, system resultant thrust ratio, and thrust efficiency were investigated in a wide range of nozzle pressure ratios and injection pressure ratios. The performance variations of the dual-throat nozzle thrust vector control system were clearly illustrated with this two-dimensional computational domain. Some constructive conclusions were obtained that may be used as a reference for further studies in the fluidic thrust vector control field.

A Study on Development of the Dual-thrust Flight Motor for Enhancing the Hit Probability (명중률 향상을 위한 이중추력형 비행모터 개발에 대한 연구)

  • Kim, Hanjun;Kim, Eunmi;Kim, Namsik;Lee, Wonbok;Yang, Youngjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.74-80
    • /
    • 2014
  • This paper describes the development of the dual-thrust flight motor for enhancing the hit probability of unguided rockets. We designed dual-thrust flight motor by shape modification of the double base propellant with high burning rate, and confirmed the dual-thrust performance by static firing tests. The test results showed the thrust ratio of about 1:7.6 between sustaining phase and boosting phase, and had a quietly normal dual-thrust characteristics. And the results showed that there was not the fire extinction phenomenon of propellant due to the pressure drop.

A Fundamental Study of Thrust-Vector Control Using a Dual Throat Nozzle (이중목 노즐을 이용한 추력벡터 제어에 관한 기초적 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.25-30
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze the performance of a dual throat nozzle(DTN) at various mass flow rate of secondary flow and nozzle pressure ratios(NPR). Two-dimensional, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. The present computational results were validated with some experimental data available. Based upon the present results, The control effectiveness of thrust-vector is discussed in terms of the thrust coefficient and the discharge coefficient.

A Fundamental Study of Thrust-Vector Control Using a Dual Throat Nozzle (이중목 노즐을 이용한 추력벡터 제어에 관한 기초적 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.339-342
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique of propulsion jet. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze the performance of a dual throat nozzle(DTN) at various mass flow rate of secondary flow. Two-dimensional, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. The present computational results were validated with some experimental data available. Based upon the present results, Thrust-vector control using a DTN is discussed in terms of the thrust coefficient and the coefficient of discharge.

  • PDF

Internal Ballistic Analysis using Two Kinds of Propellant for Design of Dual-thrust Solid Rocket Motor (이중추력형 고체 추진기관 설계를 위한 이종추진제 적용 내탄도 해석)

  • Kim, Hanjun;Moon, Kyungje
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1176-1179
    • /
    • 2017
  • In this study, internal ballistic analysis theories of dual-thrust solid rocket motor using two kinds of propellant are found, and the theories are applied to develop internal ballistic analysis model. Internal ballistic analysis which is dual-thrust solid rocket motor using two kinds of propellant is carried out an applying of the random figures of two kinds of propellant and an analyze of the test results. Through this analytical model was able to an applying internal ballistic analysis for dual-thrust solid rocket motor using two kinds of propellant.

  • PDF

Flow Characteristics of Dual Bell Nozzle with Pintle (핀틀을 적용한 듀얼 벨 노즐의 유동 특성)

  • Kim, Jeonghoon;Heo, Junyoung;Ha, Dongsung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.379-382
    • /
    • 2017
  • Flow characteristics of dual bell nozzle with pintle were investigated. Thrust and thrust coefficient were compared with the pintle-bell nozzle of the same condition, and difference according to the pintle stroke was investigated. At stroke 0 mm, the thrust of the dual bell nozzle was about 13.18% higher than the bell nozzle, and when the pintle was backward, it was similar to the bell nozzle. The change in expansion ratio with stroke was considered to be more advantageous for a dual bell nozzle that performs altitude compensation through separation and transition.

  • PDF

A numerical method for the study of fluidic thrust-vectoring

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.367-378
    • /
    • 2016
  • Thrust Vectoring is a dynamic feature that offers many benefits in terms of maneuverability and control effectiveness. Thrust vectoring capabilities make the satisfaction of take-off and landing requirements easier. Moreover, it can be a valuable control effector at low dynamic pressures, where traditional aerodynamic controls are less effective. A numerical investigation of Fluidic Thrust Vectoring (FTV) is completed to evaluate the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The methodology presented is general and can be used to study different techniques of fluidic thrust vectoring like shock-vector control, sonic-plane skewing and counterflow methods. For validation purposes the method will focus on the dual-throat nozzle concept. Internal nozzle performances and thrust vector angles were computed for several range of nozzle pressure ratios and fluidic injection flow rate. The numerical results obtained are compared with the analogues experimental data reported in the scientific literature. The model is integrated using a finite volume discretization of the compressible URANS equations coupled with a Spalart-Allmaras turbulence model. Second order accuracy in space and time is achieved using an ENO scheme.

Development of the Dual-Thrust Rocket Motor (이중추력형 로켓 모터의 개발)

  • Lee, Do-Hyung;Yoon, Myong-Won;Hwang, Kab-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.130-135
    • /
    • 2004
  • This paper describes the development of the dual-thrust rocket motor, which gets a significant change in thrust level by varying the burning area of the propellant grain. Reduced smoke propellant of low burning rate was formulated and the finocyl type grain was designed to get the boosting- and sustaining-phase of the thrust level. And the motor firing data were analyzed in detail. Developed motor was applied to the missile system to implement the successful flight test and this development helped to upgrade the performance of the missile system. The results will be usefully applied to the development of the similar rocket motors.

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.