• Title/Summary/Keyword: Dual Robot Stocker System

Search Result 2, Processing Time 0.016 seconds

A Performance Model for Stocker Systems in Liquid Crystal Display (LCD) Fabrication Lines (LCD공정에서 스토커시스템 성과측정 모델)

  • Chung, Jae-Woo;Kim, Pan-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • The stocker system is another name of automated storage and retrieval system (AS/RS) and being popularly used as main material handling tools in Liquid Crystal Display (LCD) and semiconductor fabrication facilities. Recently the use of the stocker system has been extended to transportation from conventional storage and retrieval in LCD fabrication facilities. Toolsets are connected in the ground level of the stocker system and 4~6 stories of the shelves are placed in the upper or lower ground level. As a consequence of the more sophisticated design, move requests imposed on the system greatly increased. For solving this problem, the industry adopted the dual-robot stocker system that two robots are moving along the same guide line in the stocker system. This research develops a closed-form solution to estimate a delivery rate of the dual robot stocker system under given design and operation parameters. Using this stochastic model, industry practitioners could analyze performance levels under given various design parameters, and ultimately the model helps optimizing the design parameters.

Designing of Stocker Robot's Fork Base using Axiomatic Design Method (설계의 공리를 적용한 Stocker Robot의 Fork Base설계)

  • Back, Tae-Jin;Paik, Cheol-Jun;Yoon, Jong-Bo;Moon, In-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Today, FPD manufactures are eager to develop larger and larger glass to become the prime market leader. To follow this need, larger AMHS(Automated Material Handling System) development is essential. The radical increase of glass/cassette weight puts a lot of pressure on stocker robot's dual arms, which can cause a damage of expensive glasses and contaminate a clean room facility. In this paper the axiomatic design method is used to institute a design guideline to evenly distribute a pressure throughout the stocker robot structure.