• Title/Summary/Keyword: Dual Fuel Engine

Search Result 152, Processing Time 0.027 seconds

Adaptive Neuro-fuzzy-based modeling of exhaust emissions from dual-fuel engine using biodiesel and producer gas

  • Prabhakar Sharma;Avdhesh Kr Sharma
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2022
  • The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.

Effect of Diesel Injection Characteristics on Biogas-Diesel Dual Fuel Engine Performance (디젤 분사 특성이 Biogas-디젤 혼소엔진 성능에 미치는 영향)

  • Lee, Sun-Youp;Kim, Young-Min;Lee, Jang-Hee
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.195-201
    • /
    • 2010
  • Due to its carbon-neutral nature, biogas generated from anaerobic digestion or fermentation of biodegradable wastes is one of the important renewable energy sources to reduce global warming. It is mainly composed of methane and various inert gases such as $CO_2$ and $N_2$, and the actual composition of biogas significantly varies depending on the origin of anaerobic digestion process. Therefore, in order to effectively utilize this fuel as an energy source for electricity, it is important to develop power generation engines which can successfully apply biogas with significant composition variations. In this study, efforts have been made to develop a diesel-biogas duel fuel engine as a way to achieve such a stable power generation. The effects of diesel fuel injection quantity and pressure on stable combustion and engine performance were investigated, and an impact of diesel fuel atomization was discussed. The engine test results show that there exists a 2 stage combustion which consists of diesel pilot fuel burning and premixed biogas/air mixture burning in dual fuel engine operation and optimum diesel injection parameters were suggested for biogases with various compositions and heating values.

The Effects of Valve Timing Dual Equal Retard/Advance on Performance in an SOHC SI Engine (흡배기 밸브시기 동시 변경이 SOHC SI 엔진성능에 미치는 영향)

  • 엄인용;이원근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.30-36
    • /
    • 2003
  • Variable valve timing(VVT) mechanisms are used widely for improving fuel consumption and reducing emissions. Most of application, however, are limited in the DOHC engine. Dual equal retard/advance strategy is relatively simple one and can be applied to both SOHC and DOHC engines. In this study, effects of dual equal valve timing retard/advance are investigated to observe the feasibility of VVT system on an SOHC SI engine. The result shows that fuel economy and emissions are improved in the dual retard condition due to increased internal EGR. Some amount of increase in volumetric efficiency can be achieved by advancing valve timing at low speed and by retarding at high speed. In this case, however, full load power is not so much improved as the volumetric efficiency increases because of severe knock. In the dual advance condition, there is no merit in the fuel economy and emission.

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

Research of Natural Gas/Diesel Dual Fuel Vehicle (CRDI시스템을 갖는 천연가스/디젤 혼소차량의 개발에 대한 연구)

  • Lee, Sang-Min;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.13-18
    • /
    • 2012
  • This research is about the exhaust gas and driving performance test which are for CNG-Diesel dual fuel engine. The CNG-Diesel dual fuel engine converted from 2500cc diesel has two steps of injection systems; small amount of diesel is injected to mixture CNG in cylinder to ignite before CNG is injected into each intake manifold to form mixture. The amounts of output power and emission in duel fuel consumption were measured by engine dynamometer and exhaust gas analyzer. Over 90% of diesel consumption reduction, similar driving performance to current diesel engine and reduced emission on $CO_2$ and PM, respectively, were indicated through the measurements. The two steps of system were applied to vehicle to investigate exhaust gas characteristics and driving performance via NEDC mode and real driving test. Additional oxidation catalyst was applied to reduce emission on the test vehicle and the NEDC mode test showed the reduction of Co, $CO_2$, Pm and THC.

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

A Comparative Study on the Performance and Emission Analysis of a Dual Fuelled Diesel Engine with Karanja Biodiesel and Natural Gas

  • Singh, Ashish Kumar;Kumar, Naveen;Amardeep, Amardeep;Kumar, Parvesh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • In the present study, a single cylinder four stroke dual fuel diesel engine was tested to investigate the performance and emission characteristics of various test fuels. The engine was tested in dual fuel mode using diesel and Karanja biodiesel blends as pilot fuel along with Natural gas as primary fuel with a constant gas flow rate under different loading conditions. From the experimentation it was found that smoke opacity and oxides of nitrogen (NOx) are at low level for all the prepared test fuels in dual fuel mode but the emissions of carbon monoxide (CO), carbon dioxide ($CO_2$) and hydrocarbon (HC) were found higher. In comparison to diesel fuel, by increasing the blend percentage different emission parameters are found to be reduced. At different loading conditions all the test fuels show poor performance in dual fuel mode of operation when compared with single mode of operation with diesel and biodiesel. With increase in gas flow rates, except (NOx) and smoke emissions, the other emission parameters like CO, HC and $CO_2$ values increased for all test fuels. Again, all blended fuels showed lower performance compared to diesel. The maximum pilot fuel savings for diesel was found decreasing with the increase in karanja biodiesel. From the present work it may be concluded that Karanja biodiesel with Natural gas in dual mode can be can used as promising alternative for diesel with some required engine modifications and further research must be carried out to minimize the emissions of CO, HC and $CO_2$.

Development and Optimization of the Hybrid Engine System Model to Improve the Fuel Economy (연비향상을 위한 하이브리드 엔진 시스템 모델 개발과 최적화에 관한 연구)

  • Lee, Dong-Eun;Hwang, In-Goo;Jeon, Dae-Il;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.65-73
    • /
    • 2008
  • The purpose of this study is development of universal engine model for integrated Hybrid Electric Vehicle (HEV) simulator and a optimization of engine model. The engine model of this study is based on the MATLAB Simulink for universal and include engine fuel economy technologies for HEV. Various engine fuel economy technologies for HEV is estimated by commercial engine 1-D simulation program - WAVE. And, the 1-D simulation model of base version is compared with engine experiment result. The analyzed engine technologies with 1-D simulation are Dual-CVVT, Atkinson-Cycle and Cylinder-Deactivation System. There are improvement of fuel economy and power performance with Dual-CVVT model at part load and full load, pumping loss reduction with Cylinder-Deactivation System at idle and regeneration. Each estimated technologies are analyzed by 1-D simulation on all operation region for base data to converse simulink. The simulink based engine model maintains a signal with ECU for determination of engine operation point.

Energy and exergy analysis of CI engine dual fuelled with linseed biodiesel and biogas

  • S. Lalhriatpuia;Amit Pal
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.213-222
    • /
    • 2022
  • Our overdependence on the limited supply of fossil fuel with the burden of emission as a consequence of its utilization has been a major concern. Biodiesel is emerging as a potential diesel substitution for its similar performance, with the additional benefits of emitting lesser emissions. Due to the easy availability of feedstock for Biogas production, Biogas is studied for its use in CI engines. In this study, we considered Linseed Biodiesel and Biogas to run on dual fuel mode in a CI engine. An energy and exergy analysis was conducted to study the rate of fuel energy and exergy transformation to various other processes. Exergy relocation to exhaust gases was observed to be an average of 5% more for dual fuel mode than the diesel mode, whereas exergy relocation to the diesel mode was observed to be more than the dual fuel modes. Also, exergy loss to exhaust gas is observed to be more than the exergy transferred to cooling water or shaft. The exergy efficiency observed for biodiesel-biogas mode is only lesser by 3% compared to diesel-biogas mode, suggesting Biodiesel can be a substitute fuel for diesel.

Feasibility Study of Using Wood Pyrolysis Oil in a Dual-injection Diesel Engine (이중분사기가 장착된 디젤 엔진에서 목질계 열분해유의 적용 가능성에 관한 연구)

  • Lee, Seokhwan;Jang, Youngun;Kim, Hoseung;Kim, Taeyoung;Kang, Kernyong;Lim, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.