• Title/Summary/Keyword: Dual Fuel Engine

Search Result 152, Processing Time 0.027 seconds

Economical Evaluation of a LNG Dual Fuel Vehicle Converted from 12L Class Diesel Engine (12리터급 경유엔진을 개조한 LNG혼소 화물자동차의 경제성 분석)

  • Han, Jeong-Ok;Chae, Jung-Min;Lee, Jung-Sung;Hong, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • It was measured engine power, specific fuel consumption and exhaust emissions to analyze fuel economy between LNG dual fuel vehicle and base diesel one. The tested LNG dual fuel engine is converted from diesel engine having 12 liter heavy duty class. The power of LNG dual fuel engine is 5% lower than diesel one and the engine efficiency is also lower than diesel case. However the exhaust emission of diesel engine such as PM, NOx, CO and $CO_2$ showed higher than that of LNG duel fuel case except NMHC component. And economical analysis were carried out two cases for an aspect of fuel economy and environmental benefit. As a result, LNG dual fuel vehicle gives some economic benefit to whom both business party and public side respectively though considering the subsidy and price discount for diesel.

A Development of an 3.4L-class Diesel-LNG Dual Fuel Engine for Farming Machine (3.4L 급 농기계용 디젤-천연가스 혼소 엔진 개발)

  • Sim, Juhyen;Ko, Chunsik;Lee, Sangmin;Lee, Okjae;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.187-190
    • /
    • 2012
  • An experimental study was performed to provide the effect of PM reduction and the improvement of diesel alternative ratio utilizing diesel-natural gas dual-fuel combustion mode in a retrofit 3.4-liter diesel engine. In order to achieve the same power as the original diesel engine, engine control unit (ECU) of the dual-fuel engine was calibrated. As a result, diesel alternative ratio was found that the maximum value of diesel alternative ratio was about 96%. Finally PM emission experiment was performed in C1-8 mode cycle and it was shown PM emission was extremely reduced down to $7.42{\ast}10^{-7}g/kWh$ comparing with mechanical diesel engine.

  • PDF

An Experimental Study on Combustion and Exhaust Emissions Characteristics in RCCI (Reactivity Controlled Compression Ignition) of Dual-Fuel (Diesel+Gasoline) (2중연료(디젤+가솔린)의 RCCI 연소 및 배기 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • An experimental study was performed to explore characteristics of combustion and exhaust emissions in the compression ignition engine of RCCI (reactivity controlled compression ignition) using diesel-gasoline dual fuel. A dual-fuel reactivity controlled compression ignition concepts is demonstrated as a promising method to achieve high thermal efficiency and low emissions. For investigating combustion characteristics, engine experiments were performed in a light-duty diesel engine over a range of SOIs (start of injection) and gasoline percents. The experimental results showed that cases of diesel-gasoline dual fuel combustion is capable of operating over a middle range of engine loads with lower levels of NOx and soot, acceptable pressure rise rate, low ISFC (indicated specific fuel consumption), and high indicated thermal efficiency.

Assessment of Dual Fuel Engine Performance Using Biomass Syngas (바이오매스 합성가스를 이용한 혼소식 디젤엔진 발전기의 적용성 평가)

  • Yoon, Yeo Seong;Seo, Do Hyun;Kang, ku;Choi, Sun Hwa;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.109-116
    • /
    • 2017
  • Biomass gasification produces syngas or producer gas as low calorific fuel gas that can be used as a fuel for combustion or prime movers as well as chemical synthesis. Internal combustion engines are readily available with lower costs and easily used for producing distributed power using biomass syngas. In this study, a dual fuel diesel engine was used to evaluate its performance when biomass syngas is used for fuel. The engine was originally developed for biogas application with a diesel engine with a 2,607 cc displacement. Both diesel fuel and syngas consumptions were observed at the different load conditions. The results indicate that the dual fuel engine showed a reasonably good performance and up to 63 % of diesel fuel saving.

Experimental Research on Lubricant Oil in Dual Fuel Medium-Speed Engines (중속용 Dual Fuel엔진의 윤활유에 관한 실험적 연구)

  • Hong, Sung-Ho;Park, Chang-Hoon;Park, Jungdo;Eddie, Chen
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • We performed an experimental research on lubricant oil in dual fuel medium-speed engines. It is important to select the appropriate lubricant oil because it could significantly affect engine lifetime and performance. We generally recommend the selection of the lubricant oil according to the fuel grades as contents in the project guide. However, it is a considerable challenge for shipyards to implement this concept because of the lack of space to install the complicated lubricating oil system for dual fuel engines. Therefore, we determine the adaptability of one-common lubricant oil for HiMSEN dual fuel engine through this experimental research. To check abnormality in gas mode operation and durability of engine components when a lubricating oil with high BN (base number) is used, overhaul inspections and lubricant oil analysis are carried out two times, and four times, respectively, during an operation of approximately 300 h. We investigated the variations in kinematic viscosity, base number, element quantity, pentane insoluble and sulfated ash in lubricant oil analysis. Moreover, we also investigated whether the deposit formation or wear occurred in various bearings, injectors, exhaust valves, intake valves, piston rings and so on through the overhaul inspections. There are no problems in the lubricant analysis and the overhaul inspections. Through the experimental research, we confirm that one-common lubricant oil should be selected according to the higher sulfur content of fuel oil in dual fuel engines.

Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine (천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션)

  • Choi, In Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

A Study on Ammonia Reforming Catalyst and Reactor Design for 10 kW Class Ammonia-Hydrogen Dual-Fuel Engine (10 kW 급 암모니아-수소 혼소엔진을 위한 암모니아 개질 촉매 및 반응기 설계에 관한 연구)

  • LEE, SANGHO;CHOI, YOUNG;PARK, CHEOLWOONG;KIM, HONGSUK;LEE, YOUNG DUK;KIM, YOUNG SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.372-379
    • /
    • 2020
  • Ammonia-hydrogen dual-fuel engine is a way to reduce greenhouse gas emission because ammonia and hydrogen are carbon-free fuels. In ammonia-hydrogen dual-fuel engine, hydrogen is supplied to improve the combustion characteristic of ammonia. In this study, an ammonia reformer was developed to supply hydrogen for 10 kW class ammonia-hydrogen dual-fuel engine. Thermodynamic characteristic and catalyst were investigated for ammonia reforming. Heat transfer was important for high ammonia conversion of ammonia reformer. 99% of ammonia conversion was obtained when 10 LPM of ammonia and 610℃ of hot gas were supplied to the ammonia reformer.

A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine (수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구)

  • 채재우;한동성;이상만;전영남;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF

Experimental Study to Improve the Performance and Emission of CNG Dual Fuel Diesel Engine Mixed with Hydrogen (CNG Dual Fuel 디젤기관의 성능과 배출가스 개선을 위한 수소혼합 실험)

  • ;Masahiri Shioji
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • In this study, the performance and pollutant emission of CNG engine using diesel oil as a source of ignition, so called CNG dual fuel diesel engine is considered by experiment. One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of total hydrocarbon (THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. and when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the knocking limit decrease and the produce of NOx increases.

  • PDF

Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine (13L급 LNG-디젤 혼소엔진의 기초 성능 특성 연구)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Heo, Seong-Joon;Yoon, Sung-Shik;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.54-58
    • /
    • 2007
  • The trailers with electronically controlled diesel engine was converted to dual fuel engine system. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, mximum driving distance per refueling and driveability are examined on the road including a free way. Developed vehicle can be operated over 500 km with dual Hel and shows 85% of diesel substitution ratio. Driveability is similar with but passing acceleration. It will be improved by calibration process. Test engine was set up for investigating power output, thermal efficiency and emission. ND 13-mode tests were performed for the test cycle. The emission result of dual fuel meets K2006 regulation and the engine performance of dual fuel engine was equivalent to the performance of diesel engine.

  • PDF