• Title/Summary/Keyword: Drying periods

Search Result 80, Processing Time 0.026 seconds

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF

In Vitro Development of Porcine Oocytes Following Intracytoplasmic Injection of Freeze-Dried Spermatozoa with Trehalose (Trehalose에 의하여 동결 건조된 정자의 돼지 난자 내 직접주입 후 체외 배발달)

  • Kang, Hwa-Hyung;Lee, Ji-Woong;Kang, Man-Jong;Kim, Kwang-Hyun;Moon, Seung-Ju
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The objectives of this study were to investigate the effects of trehalose as a cryoprotectant for porcine freeze-dried spermatozoa, to find the optimal freeze-drying time and storage periods of freeze-dried spermatozoa, and to find out pronuclear formation rates, cleaved rates, and embryo development through intracytoplasmic injection of freeze-dried spermatozoa on porcine oocytes. The survival rates of spermatozoa after freeze-drying with trehalose treatment were significantly higher than those of them without trehalose treatment (p<0.05). The highest survival rates were found at 75 mM trehalose treatment. The longer storage periods after freeze-drying seemed to have a lower survival rates. Development in culture of pig by ICSI with trehalose treatment were significantly higher than those of them without trehalose treatment (p<0.05). Shorter freeze-drying time of spermatozoa was resulted in the highest cleaved rates and embryo development.

Biodrying of municipal solid waste under different ventilation periods

  • Ab Jalil, N.A.;Basri, H.;Basri, N.E. Ahmad;Abushammala, Mohammed F.M.
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • Biodrying is a pre-treatment method that applies biological and mechanical concepts to drying solid waste. In Malaysia, municipal solid waste (MSW) is unseparated and contains a high level of moisture, making the use of technology such as solid waste burning unsuitable and harmful. MSW containing organic material can be processed naturally until the moisture content of the waste is reduced. This study on MSW biodrying was carried out on a laboratory scale to measure the percent moisture content reduction and to monitor temperature patterns under different ventilation periods. This work was conducted using five biodrying reactors volumes of 50 liters each. Reactors were ventilated for 5, 10, 15, 20 and 30 min every 3 h, with a 3 bar air supply. The duration of this process was 14 days for all samples. The results showed that the optimum ventilation time was 10 min, with an 81.84% reduction in moisture content, and that it required almost half of the electricity cost required for the 20 and 30 min ventilations.

Strength Variation of Cemented Sand Due to Wetting (수침이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Ki-Young;Kim, Chang-Woo;Choi, Hyun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.303-311
    • /
    • 2009
  • In this study, weakly cemented sand was cured at air dry condition with different periods (3, 7, 14, 21, 28 days) and its unconfined compressive strength was evaluated. As a result, the strength of specimens with low cement ratios such as 4 and 8% increases until 7 days curing but, after 7 days, their strength continuously decreases. The strength of specimens with relatively high cement ratios such as 12 and 16% increases up to 7 days curing and then stays almost constant until 21 days. After 21 days curing, their strength suddenly dropped down, which is much lower than the strength of 3 days curing specimen. A cemented sand and gravel called CSG, which is highly permeable, could be exposed to repetitive drying and wetting conditions due to rainfall or groundwater table change during curing. In this study, the weakly cemented sand is exposed to repetitive drying and wetting and then its unconfined compressive strength was evaluated. As a result, the strength of a specimen with 27 days drying condition following 1 day wetting was at maximum 35% lower than the one cured under 28 days drying. The strength degradation due to wetting decreases as a cement ratio increases. However, the strength of a specimen with repetitive drying and wetting increases as the number of wetting increases until 3 cycles. After 3 cycles of drying and wetting, the rate of strength increase decreases due to an insufficient water for hydration or stays constant. If the sufficient water supply is provided to cemented sand during curing, the target or design strength increase can be achieved. Otherwise, the strength degradation due to wetting should be considered at the design stage.

Evaluation of the Wear Comfort of Outdoorwear by Skin Wettedness Analyses (Skin Wettedness 분석을 통한 아웃도어웨어의 착용 쾌적성 평가)

  • Jeong, Jeong-Rim;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.11 no.6
    • /
    • pp.947-952
    • /
    • 2009
  • The purpose of this study is to analyze skin wettedness($w$) used as the rate index of thermal comfort, and to evaluate the wear comfort of outdoorwear. Skin wettedness is widely used to express the degree of thermal comfort. If skin wettedness exceeds a certain threshold, the body feels damp and discomfort. An experiment which consisted of rest(30 min), exercise(30 min) and recovery(20 min) periods was administered in a climate chamber with 10 healthy male participants. Two kinds of outdoorwears made of 100% cotton fabrics (Control) and specially engineered fabrics having feature of quick sweat absorbency and high speed drying fabric (Functional) were evaluated in the experiment. The condition of climate chamber was controlled according to the thermal insulation of 4 kinds of experimental ensembles(E1~E4). Total sweat loss, sweat loss absorbed into clothing and skin temperature were measured. Skin wettedness was calculated from the ratio of evaporative rate to the maximal evaporative capacity. Skin wettedness of 'Functional' was lower than 'Control' in the 3 kinds of ensembles(E1, E2, E4) because the materials of 'Functional' were composed of quick sweat absorbency and high speed drying fabrics, water vapour permeability and waterproof fabrics.

Formation Conditions of Na-cellulose II with Three Fold Helix (3회나선축을 갖는 Na-cellulose II의 형성조건에 관한 고찰)

  • Kim, Nam-Hun;Lee, Myoung-Ku
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.18-23
    • /
    • 1999
  • The formation conditions of Na-cellulose II with three fold helix were investigated by an x-ray diffraction method. Na-cellulose II was formed through Na-cellulose I. It seems that the concentration of sodium hydroxide in Na-cellulose II is higher than both those of Na-cellulose I and Na-cellulose III. Na-cellulose II was formed well by different rinsing and drying methods even though the sample treatment was carried out in very short periods of time. Metal-complexed Na-cellulose swollen in the mixture of $Cu(OH)_2$ and sodium hydroxide is stable in wet state, and changed to a different polymorph by drying.

  • PDF

Seed Germination Characteristics of Korean Native Plants for Slope Restoration and Revegetation (비탈면녹화용 몇가지 자생식물의 종자발아특성)

  • Yim, Jae Hong;Kim, Dong Wook;Jang, Seong Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.25-31
    • /
    • 1999
  • The differences in seed germination rates of Korean Native Plants were observed depending on the harvest years, the seed companies, the storage periods, the drying methods and the plant morphological types. The seed germination rates were changed significantly by the harvest years and the seed companies in all 4 species tested. The seed germination rates were decreased after 1 year storage at $4^{\circ}C$ in all 8 species tested and three of them did not germinate at all. A rapid drying method at $35^{\circ}C$ with a convection oven was not suitable for Chrysanthemum spp., but there were no significant changes of germination rates in Aster spp. The germination rates were decreased more at seeding in soil than at lab. test with Dicotyledon but no significant changes with Monocotyledon. Especially, the germination rates of fine seed on 5mm soil covering treatment were significantly decreased.

  • PDF

Change of Quality in Poncirus trifoliata Rafinesque according to Storage Conditions (보관조건에 따른 유통생약 지실의 품질변화 연구)

  • Lee, A-Yeong;Chun, Jin-Mi;Jang, Seol;Choo, Byung-Kil;Lee, Hye-Won;Kim, Ho-Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.188-191
    • /
    • 2008
  • Poncirus trifoliata Rafinesque has been used as the immature fruit of the trifoliate orange tree. This study was carried out to investigate the quality change of Poncirus trifoliata Rafinesque depending on packing materials (vacuum packing, PP (polypropylene) packing, gunny sack packing), storage places and storage periods up to 12 months. The change of loss on drying content, content of poncirin were measured during the 12 months. As a result, the loss on drying content was decreased rapidly in gunny sack packing after storage of 12 months at room temperature. The content of poncirin was decreased generally according to storage conditions and its average loss percent was 38.8%.

Evaluation of high plasticity clay stabilization methods for resisting the environmental changes

  • Taleb, Talal;Unsever, Yesim S.
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.461-469
    • /
    • 2022
  • One of the most important factors that should be considered for using any ground improvement technique is the stability of stabilized soil and the durability of the provided solution for getting the required engineering properties. Generally, most of the earth structures that are constructed on clayey soils are exposing movements due to the long periods of drying or wetting cycles. Over time, environmental changes may result in swells or settlements for these structures. In order to mitigate this problem, this research has been performed on mixtures of high plasticity clay with traditional additives such as lime, cement and non-traditional additives such as polypropylene fiber. The purpose of the research is to assess the most appropriate ground improvement technique by using commercially available additives for resisting the developed desiccation cracks during the drying process and resisting the volume changes that may result during wet/dry cycles as an attempt to simulate the changes of environmental conditions. The results show that the fiber-reinforced samples have the lowest volumetric deformation in comparision with cement and lime stabilized samples, and the optimum fiber content is identified as 0.38%. In addition, the desiccation cracks were not visible on the samples' surface for both unreinforced and chemically stabilized samples. Regarding cracks resistance resulting from the desiccation process, it is observed, that the resistance is connected with the fiber content and increases with the increase of the fiber inclusion, and the optimum content is between 1% and 1.5%.

A Study on the optimum drying condition of sewage sludge cake using continuous microwave full scale dryer (연속적 마이크로파 Full Scale 건조장치를 이용한 하수슬러지 케익의 최적 건조조건 연구)

  • Ha, Sang-An;Jung, Wang-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.47-56
    • /
    • 2008
  • The objective of this research is to evaluate the optimum recycling methods for the sewage sludge cakes at different microwave power-settings and for different periods of time. The dehydrated sewage sludge cakes used in this study was obtained from N wastewater treatment plan in the P City. The beginning drying processes were carried out in a microwave oven with 2,450 MHz frequency and power ranges of 1kW to 4 kW. The continuous conveyer drying system was also operated with 2,450 MHz frequency and power setting, ranging from of 1 kW to 6 kW. Initial moisture content of the sewage cake is 78~80%, and the moisture content decreased rapidly up to 0.2~2(wt%) within short periods due to breaking the cell walls. This study is also conducted to evaluate the characteristics of sewage sludge cakes with respect to important physical parameters effect on the thermal kinetics for evaporation water in the sludge which are operation times, moisture contents, drying rates, input amounts, flow rates and calorific values. It takes 60 minutes and 120 minutes to reach the critical moisture contents with power setting of 4 kW for 3kg/min and 6kg/min of the flow rates respectively. It takes 120 minutes and 110 minutes to reach the critical moisture contents with flow rates of 2.5 cm/min and sludge input of 6kg/min for the power settings of 4 kW and 6 kW respectively. The most effective value of the power for drying the sludge is 4 kW. Operation with 6kg/min and 4kW on 2cm of the sludge thickness can be effectively and inexpensively to reach the critical moisture contents, when you compare 2cm of the sludge thickness with 1cm and 3cm of the sludge thickness.

  • PDF