• 제목/요약/키워드: Drying machine

검색결과 112건 처리시간 0.025초

고온 챔버의 노즐형상에 따른 섬유가공기 유동 및 열전달 해석 (FLOW AND HEAT TRANSFER CHARACTERISTICS OF TEXTILE MACHINE ACCORDING TO NOZZLE SHAPES OF HIGH TEMPERATURE CHAMBER)

  • 박선명;박태선
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.70-78
    • /
    • 2015
  • Turbulent flow and heat transfer characteristics of textile machine are numerically investigated. To examine the influence of flow structures on the drying performance of fabrics, the nozzle shape of high temperature chamber is changed. For several nozzles, flow and heat transfer characteristics are discussed. The results show that the drying performance is improved by controlling the angle and arrangement of nozzles corresponding to different drying conditions. This feature is strongly related to the enhancement of turbulent fluctuations and secondary flows.

퍼지를 이용한 해태건조기용 자동 온도${\cdot}$습도 제어시스템 (The Automatic Temperature and Humidity Control System for Laver Drying Machine Using Fuzzy)

  • 김은석;주기세
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.167-173
    • /
    • 2002
  • The look up table method conventionally applied to control the inner temperature and humidity of a laver drying machine has repeatedly occurred not only laver's damage but also inferior goods since the reaching time at the optimum state takes a long time. In this paper, a fuzzy control theory instead of the look up table was proposed to reduce the reaching time at the optimum state. The proposed method used six input variables and four output variables for the fuzzy control, and a triangle rule for a fuzzifier, The Mandani's min-max method was applied to a fuzzy inference. Also, the mean method of maximum was applied to a defuzzifier. The method applied to the fuzzy controller contributed to reduce the reaching time at the optimum state, and to minimize not only laver's damage but also inferior goods.

수산물의 저온진공건조 열적 특성에 관한 연구 - 해삼을 중심으로 - (A Study on the Thermal Characteristics of Aquatic Products by Low Temperature Vacuum Drying - Especially on the Sea Cucumber -)

  • 최순열;김민수
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.46-51
    • /
    • 2011
  • Low temperature vacuum drying technique, whose drying time and quantity of exhausting energy is about 25~30% of hot air drying, is very excellent in the drying efficiency. This paper is made out in the aspects of heat engineering with the object of developing Korean drying machine which can dry once a large quantity of objects to be dried in the state of low temperature and vacuum. As the results, it took about 17 hours(3~4 days in case of hot air drying) for material to reach about 18% of the final moisture content in order to store products for a long time, from about 78~80% of the early moisture content at the beginning of drying, and maximum drying rate comes to about 0.35 kg/m2hr at about 400% of the moisture content.

자동 캡 세척장치 개발에 관한 연구 (A Study on the Development of Automatic Cap-Washing M/C)

  • 신성우;김대성;이춘만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1849-1852
    • /
    • 2005
  • An automatic cap-washing machine is developed for rinse and dry of synthetic resin cap which is used in spring water bottle. This machine should be achieved all processes washing and drying, array, transfer automatically. A cap is washed by an ozonized water and pure water first. Next, a cap is dried by a hot wind drying equipment. In this paper, structural and modal analysis for the cap-washing machine is carried out to check the design criterion of the machine. The analysis is carried out by FEM simulation using the commercial software, CATIA V5. And a fictitious mass properties was used for the analysis of the machine. Finally, the machine performance is shown to be satisfactory.

  • PDF

세탁과 건조에 따른 양모 위편성물의 편성조직별 형태 변화 (The effects of knit stitches on the knit construction and the dimensional stability to washing and drying of wool weft-knitted fabrics)

  • 박세은;백성필;박명자
    • 한국의상디자인학회지
    • /
    • 제24권2호
    • /
    • pp.1-10
    • /
    • 2022
  • The purpose of this study is to analyze the structural properties of 100% wool fabrics knitted with various stitch types and to evaluate dimensional stability from shrinkage in wet cleaning and drying. Materials were weft-knitted from twenty-four different stitches with 7 gauge using a computerized flatbed knitting machine. Weight, thickness, density, and length were measured. A domestic washing machine and a tumble dryer were used for the shrinkage test. The results are as follows: Knitted fabrics were divided into 3 groups based on weight per unit area. Porous knits show light weight whilst milano, pintuck, rib stitches belong to the heaviest group. A positive correlation between weight and thickness was found and the same result was obtained for wale density and weight. Dimensional shrinkage of knitted fabrics was increased during repetitive wet cleaning and drying regardless of knit stitches. Especially, fabrics knitted with float, tuck, cable, and links & links stitches samples were contracted more than 15% in the first treatment whereas 2x1 rib stitch showed 1% shrinkage rate. Fisherman and milano stitches contracted in both course and wale direction with similar shrinkage rates. However, porous knits with float and tuck stitches shrank in course direction by 20% as well as cable samples contracted from 5% to 20% after repeated washing and drying. On the other hand, 30% and 15% contraction of wale direction occurred in orderly float and links & links stitches, respectively. Machine dried knits have a higher shrinkage rate than air-dried knits, but the drying method did not affect to the direction of contraction. In conclusion, variations of knit, tuck, and float stitches affect knit construction and dimensional stability from shrinkage in wet cleaning and drying of wool knitted fabrics.

Machine learning techniques for reinforced concrete's tensile strength assessment under different wetting and drying cycles

  • Ibrahim Albaijan;Danial Fakhri;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Khaled Mohamed Elhadi;Shima Rashidi
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.337-348
    • /
    • 2023
  • Successive wetting and drying cycles of concrete due to weather changes can endanger the safety of engineering structures over time. Considering wetting and drying cycles in concrete tests can lead to a more correct and reliable design of engineering structures. This study aims to provide a model that can be used to estimate the resistance properties of concrete under different wetting and drying cycles. Complex sample preparation methods, the necessity for highly accurate and sensitive instruments, early sample failure, and brittle samples all contribute to the difficulty of measuring the strength of concrete in the laboratory. To address these problems, in this study, the potential ability of six machine learning techniques, including ANN, SVM, RF, KNN, XGBoost, and NB, to predict the concrete's tensile strength was investigated by applying 240 datasets obtained using the Brazilian test (80% for training and 20% for test). In conducting the test, the effect of additives such as glass and polypropylene, as well as the effect of wetting and drying cycles on the tensile strength of concrete, was investigated. Finally, the statistical analysis results revealed that the XGBoost model was the most robust one with R2 = 0.9155, mean absolute error (MAE) = 0.1080 Mpa, and variance accounted for (VAF) = 91.54% to predict the concrete tensile strength. This work's significance is that it allows civil engineers to accurately estimate the tensile strength of different types of concrete. In this way, the high time and cost required for the laboratory tests can be eliminated.

참깨 탈립 작업기계 개발에 관한 연구(I) - 시작기 설계 제작 - (Development of Shattering Machine for Sesame(I) - Design and Fabrication of Prototype Machine -)

  • 이종수;김기복
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.301-308
    • /
    • 2007
  • Sesame has usually been harvested manually in korea. The conventional sesame harvest procedures consists of cutting, binding, drying and pod shattering. The procedures of drying and shattering are repeated $2{\sim}3$ times. By manual works of this conventional shattering, it was found that some extent of pods were has always remained unopened. Therefore, this study was conducted to find a way to save the labor of sesame shattering by use of a drying device; a prototype of shattering machine was developed and tested the performance. The developed prototype consists of several parts: a continuous horizontal inlet using a chain conveyer, a shattering by a shocking agitator, a rotating cone for shattering of remaining closed pods, and a winnow. The shattering ratio measured by this prototype was 90.3%, 6.4% and 3.3% at the first, second and third shattering step, respectively. We found that in contrast to the conventional method which required at least 3 times operations for complete shattering, this shattering prototype with the condition of sufficient dried sesame pod offered more than 90% of shattering ratio in the first operation.

밤 박피 시스템 개발 (Development of Chestnut Peeling System)

  • 김종훈;박재복;최창현
    • Journal of Biosystems Engineering
    • /
    • 제22권3호
    • /
    • pp.289-294
    • /
    • 1997
  • The chestnut is a well-known and important forest product in Korea. The annual production of chestnut is about 100, 000tons and its cultivating area is 80, 000ha. However, the peeling process of outer and inner skins of chestnut is very difficult due to hardness and adhesiveness of chestnut skin. The peeling process of chestnut was operated by manual work and the performance of chestnut peeling machine is very low. The purpose of this study is to develope the prototype of new chestnut peeling system. The hardness of chestnuts was tested with six different drying conditions and its range was from 949$g/mm^2$ to 2, 149$g/mm^2$. The hardness of chestnuts was decresed gradually during the drying process. The chestnut peeling Process includes sorting, storage, drying, outer skin cutting, flame peeling, continuous frictional skin peeling, and inner skin cutting operation. The developed chestnut peeling system consists of outer skin cutter, flame peeler, continuous frictional skin peeler and inner skin cutter. The system can peel domestic chestnuts at 150$kg/hr$ with peeling rate of 78%.

  • PDF

VOC 소각 및 연소가스 재 순환 에나멜 도장장치 개발 (Development of a Enamel Coating Machine Typed VOC Incineration and Flue Gas Recirculation)

  • 정남조;유인수;유상필;송광섭
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.579-587
    • /
    • 2003
  • 에나멜 도장장치의 건조 과정에서는 유해한 VU가 다량 배출된다. 이 VOC 가스는 촉매연소를 통해 완전 소각될 수 있으며, 소각되는 과정에서 발생된 열은 공정에 다시 사용할 수 있다. 본 연구에서는 이러한 기술적 특성을 이용하여 환경개선과 에너지 절감 효과가 뛰어난 에나멜 도장장치를 개발하였다. 이를 위한 기초 연구로서 촉매의 VOC 가스에 대한 연소 특성 및 성능 평가와 수치해석이 수행되었다. 연구 결과에 의하면, 고온에서 VOC에 대한 금속 촉매 폼의 성능은 우수한 것으로 나타났으며, 건조 과정이 효율적으로 진행되기 위해서는 재 순환 가스 공급량 및 건조 가스 흡입량의 정밀한 조절이 가능한 구조로 설계되어져야 함을 보여 주었다.

  • PDF

Changes in Absorbency and Drying Speed of a Quick-drying Knit Fabric by Repeated Laundering

  • Roh, Eui-Kyung;Kim, Eun-Ae
    • 한국의류학회지
    • /
    • 제34권12호
    • /
    • pp.2062-2072
    • /
    • 2010
  • This research evaluates the change of the water absorbency and drying speed of a quick-drying knit fabric by repeated laundering and laundering conditions and investigates the influence of laundering conditions on the functional properties of the knit fabric. Four factors of laundering conditions were studied: detergent, water hardness, water temperature, and frequency of rotation. Knit fabrics were washed for 25 laundering cycles in a drum-type washing machine with nine different laundering conditions derived from an orthogonal array. The properties of knit fabrics were measured with a drop absorption test, a strip test, and a drying time test. Relaxation shrinkage pointed to a change in the structural characteristics of the knit fabric. Wetting time was faster and wickability was greater in the knit fabrics that underwent 5 laundering cycles; in addition, there were no obvious changes in wetting time and wickability. The detergent was the most important factor in wetting time (40.4%) and wickability (60% or above). Water hardness, water temperature and RPM had less of an effect on wetting time and wickability. There were no significant differences between the levels of laundering conditions (except for detergent) on wetting time and wickability. Drying times with neutral and alkali were slower by repeated laundering; however, there was no obvious change in drying time. Hardness, water temperature and RPM had less of an impact on drying time.