• Title/Summary/Keyword: Drying Energy

Search Result 544, Processing Time 0.022 seconds

Effect of Drying Temperature on High Quality Functional Processed Products of Chinese Matrimony Vine (가공용 소재로서 구기자나무 잎의 건조온도 조건)

  • Ju, Jung Il;Lee, Jeong;Paik, Seung Woo;Yun, Tug Sang;Park, Young Chun;Lee, Bo Hee;Kim, Hyun Ho;Lee, Hee Bong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.468-472
    • /
    • 2015
  • Background : Chinese matrimony vine (Lycium chinense Mill.) is a deciduous shrub belonging to the Solanaceae. The leaves are used as an alternative raw material replacing dried fruits associated with high production costs in many industires. The aim of this experiment was to determine the effect of drying temperature on the leaves used in the manufacture of functional products. Methods and Results : The leaves of Chinese matrimony vine were harvested when the plant height reached 60 - 70 cm in the spring and treated at four different temperatures ($40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$ and $70^{\circ}C$). The time to reach the desiccation state of 20% was 63 h at $40^{\circ}C$, 37 h at $50^{\circ}C$, 17 h at $60^{\circ}C$ and 11 h at $70^{\circ}C$. The drying rate per hour was 1.28% at $40^{\circ}C$, 2.25% at $50^{\circ}C$, 4.94% at $60^{\circ}C$ and 7.60% at $70^{\circ}C$. No significant difference were observed in ash, crude fat, polyphenol or rutin content of treated samples. Crude protein and betaine content decreased with higher dry temperatures. Nitrogen free extract of the treated samples increased with higher drying temperatures. Conclusions : Taking into consideration drying time, drying rate, color value, energy consumption and functional ingredients is advantageous to dry the leaves of the Chinese matrimony vine at $60^{\circ}C$ using a hot air agricultural dryer.

A Study on the Air Conditioning System by the Low Temperature Energy of the Deep Seawater (해양심층수 이용 냉방시스템에 관한 연구)

  • Park, Seong-Je;Kim, Hyo-Bong;Kim, Hyeon-Ju
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.253-256
    • /
    • 2006
  • This paper shows the study on application of the law temperature energy in the deep seawater. Deep, cold seawater has long been recognized as a valuable ocean energy resource. Recently, research and experimentation has been conducted on energy systems using deep seawater: deep seawater air conditioning system, ice-making device, salt and fresh-water manufacturing system and the Spray freeze drying system for extracting valuable material of the deep seawater. They are technically and economically feasible today: once installed, the energy is inexhaustible and there are no adverse environmental impacts. Because of the economy of scale in the air conditioning system, the seawater A/C system is most appropriate for supplying multiple buildings or hotels in a coastal area.

  • PDF

Drying Characteristics of a Radiative Industrial Dryer Adopting a Mat-Type Premixed Catalytic Burner (매트 형태의 예혼합 촉매 버너에 의한 복사 건조 특성)

  • Kim, Hyouck-Ju;Ahn, Joon;Song, Kwang-Sup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.735-742
    • /
    • 2011
  • A catalytic burner that utilizes the thermal energy from fossil fuels without the emission of nitrogen oxides ($NO_x$) has been developed. For this purpose, the newly developed burner has two features: firstly, it is in the shape of a flat mat so as to maximize its heating surface, and secondly, it adopts premixed combustion so that it can be used in a closed space. In the present study, the burner was used in a radiation-type industrial dryer. This dryer yields thermal energy in the form of thermal radiation in the infrared regime, which has been proved to be effective for drying organic substances under low-moisture conditions. Analysis of the experimental data has proved that the thermal efficiency of the dryer is better correlated to the moisture than to the dry rate

Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder (다공성 철 분말을 이용한 열전지용 열원 적합성 연구)

  • Kim, Ji Youn;Yoon, Hyun Ki;Im, Chae Nam;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.

Hydrated Vanadium Pentoxide/Graphene Oxide Nanobelts for Enhanced Electrochemical Performance

  • Hyegyeong Hwang;Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.387-394
    • /
    • 2024
  • Transition metal oxide-based materials have mainly been studied as electrodes for energy storage devices designed to meet essential energy demands. Among transition metal oxide-based materials, hydrated vanadium pentoxide (V2O5·nH2O), a vanadium oxide material, has demonstrated great electrochemical performance in the electrodes of energy storage devices. Graphene oxide (GO), a carbon-based material with high surface area and high electrical conductivity, has been added to V2O5·nH2O to compensate for its low electrical conductivity and structural instability. Here, V2O5·nH2O/GO nanobelts are manufactured with water without adding acid to ensure that the GO is uniformly dispersed, using a microwave-assisted hydrothermal synthesis. The resulting V2O5·nH2O/GO nanobelts exhibited a high specific capacitance of 206 F/g and more stable cycling performance than V2O5·nH2O without GO. The drying conditions of the carbon paper electrodes also resulted in more stable cycling performance when conducted at high vacuum and high temperature, compared with low vacuum and room temperature conditions. The improvement in electrochemical performance due to the addition of GO and the drying conditions of carbon paper electrodes indicate their great potential value as electrodes in energy storage devices.

Performance Evaluation of a Flash Dryer and a Rotary Kiln Dryer for Upgrading Low Rank Coal (석탄의 고품위화를 위한 기류건조기와 로터리킬른 건조기의 성능 비교평가)

  • Eom, Taegyu;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • Drying, which is the oldest and most energy-intensive process, is an essential process for treatment of solid product. The specific procedure to design and evaluate the dryers, which are a rotary kiln dryer and a flash dryer, in case of drying the high-moisture coal was described. From determination of size to the heat and mass balance in one-dimensional model were conducted to evaluate the performance of dryers. Heat consumption, inlet gas temperature and size of the dryers were compared between a rotary kiln dryer and a flash dryer. Further considerations to evaluate the reactor elaborately were also discussed. Performance simulation of dryers along with the design procedure described here will provide helpful basis for understanding the concept of reactor design.

Characteristics of $TiO_2$ Powders Prepared by Freeze Drying Method (동결건조법으로 제조한 $TiO_2$의 특성)

  • 윤기현;박승순
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.277-283
    • /
    • 1988
  • Extremely fine $TiO_2$ powders were synthesized from titanium chloride by the precipitation and freeze drying method. The phase transformation and electrical conductivity were investigated as a function of temperature. X-ray analysis showed that the phase transformation of the synthesized powder from the anatase to rutile occured at 64$0^{\circ}C$ and finished at 92$0^{\circ}C$ due to small particle size and large specific surface area. The activation energy obtained from electrical conductivity vs. temperature was about 1.63eV. This relatively large value was due to porosity in the specimen.

  • PDF

Experimental Study on the Low Temperature Catalytic Burner to Burn LPG and Toluene Alternately (LPG-톨루엔 겸용 저온 촉매버너의 연소특성에 관한 실험적 연구)

  • Seo, Yong Seog;Ryu, Ihn Soo;Kang, Sung Kyu;Shin, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1538-1546
    • /
    • 1998
  • The aim of this study is to investigate the characteristics of the catalytic burner to bum LPG and toluene alternately which can be applied to the dryer of an acryl coating process of textile. It was difficult to obtain complete conversion when the catalytic burner was installed to downward direction. The catalytic burner was improved by introducing the forced diffusion combustion air and the premixing air. The optimal operating conditions for the newly improved catalytic burner were obtained. The catalytic burner for toluene mixture was also investigated to incinerate toluene mixture exhausted from drying process. Results showed that the catalytic burner could oxidize toluene mixture completely at the proper operating conditions. Finally, the catalytic burner to bum LPG and toluene alternately was applied to the dryer of acryl coating. By using the catalytic burner, benefits of energy savings and environmental protection were obtained.

Early-Age Behavior of Base Restrained RC Walls (철근콘크리트 벽체의 초기재령 거동 해석)

  • 곽효경;하수준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.251-258
    • /
    • 2003
  • The early -age behavior of base restrained reinforced concrete (RC) walls is analyzed using a three-dimensional finite element method in this study. After calculating the temperature and internal relative humidity variations of an RC wall, determination of stresses due to thermal gradients, differential drying shrinkage, and average drying shrinkage is followed, and the relative contribution of these three stress components to the total stress is compared. The mechanical properties of early-age concrete, determined from many experimental studies, are taken into consideration, and a discrete reinforcing steel derived using the equivalent nodal force concept is also used to simulate the cracking behavior of RC walls. In advance, to Predict the crack spacing and maximum crack width in a base restrained RC wall, an analytical model which can simulate the post-cracking behavior of an RC tension member is introduced on the basis of the energy equilibrium before and after cracking of concrete.

  • PDF

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF