• Title/Summary/Keyword: Dry matter degradability

Search Result 138, Processing Time 0.02 seconds

Effects of Feeding Corn-lablab Bean Mixture Silages on Nutrient Apparent Digestibility and Performance of Dairy Cows

  • Qu, Yongli;Jiang, Wei;Yin, Guoan;Wei, Chunbo;Bao, Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.509-516
    • /
    • 2013
  • This study estimated the fermentation characteristics and nutrient value of corn-lablab bean mixture silages relative to corn silages. The effects of feeding corn-lablab bean mixture silages on nutrient apparent digestibility and milk production of dairy cows in northern China were also investigated. Three ruminally cannulated Holstein cows were used to determine the ruminal digestion kinetics and ruminal nutrient degradability of corn silage and corn-lablab bean mixture silages. Sixty lactating Holstein cows were randomly divided into two groups of 30 cows each. Two diets were formulated with a 59:41 forage: concentrate ratio. Corn silage and corn-lablab bean mixture silages constituted 39.3% of the forage in each diet, with Chinese wildrye hay constituting the remaining 60.7%. Corn-lablab bean mixture silages had higher lactic acid, acetic acid, dry matter (DM), crude protein (CP), ash, Ca, ether extract concentrations and ruminal nutrient degradability than monoculture corn silage (p<0.05). Neutral detergent fiber (NDF) and acid detergent fiber (ADF) concentrations of corn-lablab bean mixture silages were lower than those of corn silage (p<0.05). The digestibility of DM, CP, NDF, and ADF for cows fed corn-lablab bean mixture silages was higher than for those fed corn silage (p<0.05). Feeding corn-lablab bean mixture silages increased milk yield and milk protein of dairy cows when compared with feeding corn silage (p<0.05). The economic benefit for cow fed corn-lablab bean mixture silages was 8.43 yuan/day/cow higher than that for that fed corn silage. In conclusion, corn-lablab bean mixture improved the fermentation characteristics and nutrient value of silage compared with monoculture corn. In this study, feeding corn-lablab bean mixture silages increased milk yield, milk protein and nutrient apparent digestibility of dairy cows compared with corn silage in northern China.

Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

  • Qin, Wei-Ze;Choi, Seong-Ho;Lee, Seung-Uk;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.

Changes in ruminal fermentable characteristics and nutrient degradabilities of corn flake according to chamber type in Hanwoo: chamber type for corn flake in the rumen of Hanwoo

  • Ahn, Jun-Sang;Shin, Jong-Suh;Chung, Ki-Yong;Lim, Hwan;Choi, Jang-Gun;Kim, Ji-Hyung;Kwon, Eung-Gi;Park, Byung-Ki
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.695-706
    • /
    • 2018
  • This study was conducted to investigate the effect of a steam chamber type on the ruminal fermentable characteristics and nutrient degradabilities of corn flakes in Hanwoo. Three Hanwoo equipped with a ruminal fistula were used as experimental animals. There were two treatments: Corn flake using a steam chamber (CFSC, 1.0 atm - $100^{\circ}C$ 96 min) or corn flake using a pressurized steam chamber (CFPSC, 1.5 atm - $111^{\circ}C$ 12 min), respectively. In the in vitro trial, the ruminal pH was significantly lower in the CFPSC than in the CFSC (p < 0.01). The ammonia concentration was increased by 14.1% in the CFPSC compared to the CFSC (p < 0.05). The concentration of acetic acid was higher in the CFSC than in the CFPSC (p < 0.01). The concentrations of propionate, butyrate and total-VFA at 24 and 48 h were higher in the CFPSC than in the CFSC (p < 0.05). In the in situ trial, the degradability of dry matter was significantly higher in the CFSC than in the CFSC (p < 0.01). In addition, the degradabilities of starch and crude protein were significantly higher in the CFSC than in the CFSC (p < 0.01). Thus, the present results indicate that the pressurized steam chamber could be recommended to improve the feed value of corn flake according to the increase in the starch degradability and volatile fatty acid production.

Effects of Sown Season and Maturity Stage on In vitro Fermentation and In sacco Degradation Characteristics of New Variety Maize Stover

  • Tang, S.X.;Li, F.W.;Gan, J.;Wang, M.;Zhou, C.S.;Sun, Z.H.;Han, X.F.;Tan, Z.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.781-790
    • /
    • 2011
  • The effects of seedtime and maturity stage on nutritive value of five maize stover varieties, including conventional maize (Kexiangyu 11, CM), fodder maize (Huqing 1, FM), high oil maize (Gaoyou 115, HOM), sweet maize (Kexiangtianyu 1, SM) and waxy maize (Kexiangluoyu 1, WM), were examined based on chemical composition, in vitro gas production and in situ incubation techniques. Maize stover was sampled at d 17 and d 30 after tasseling, and designated as maturity stage 1 and stage 2, respectively. The average dry matter (DM) organic matter (OM), crude protein (CP) and fiber contents were the greatest for HOM, SM and FM, respectively. CM had the highest in vitro organic matter disappearance (IVOMD) and volatile fatty acid (VFA) concentration. The highest ammonia nitrogen ($NH_3$-N) concentration in the incubation solution, and effective degradability of DM ($ED_{DM}$) and neutral detergent fiber ($ED_{NDF}$) were observed in SM. Advanced maturity stage increased (p<0.05) DM content, $ED_{DM}$ and $ED_{NDF}$, but decreased (p<0.05) OM and CP contents, and decreased (p<0.05) b and a+b values, IVOMD and molar proportion of valerate in the incubation solution for maize stover. Maize sown in summer had greater (p<0.05) OM content, but lower DM, CP, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content compared with maize sown in spring. Maize sown in summer had greater (p<0.001) IVOMD, $NH_3$-N concentration in the incubation solution and $ED_{NDF}$, but lower (p<0.01) ratio of acetate to propionate compared to maize sown in spring. The interaction effect of variety${\times}$seedtime was observed running through almost all chemical composition, in vitro gas production parameters and in situ DM and NDF degradability. The overall results suggested that SM had the highest nutrient quality, and also indicated the possibility of selecting maize variety and seedtime for the utilization of maize stover in ruminants.

Manufacturing and Feed Value Evaluation of Wood-Based Roughage Using Lumber from Thinning of Oak and Pitch Pine (참나무류와 리기다소나무 간벌재를 이용한 목질 조사료 제조 및 사료가치 평가)

  • Kim, Seok Ju;Lee, Sung-Suk;Baek, Youl Chang;Kim, Yong Sik;Park, Mi-Jin;Ahn, Byeong Jun;Cho, Sung-Taig;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.851-860
    • /
    • 2015
  • The objective of this study was to manufacture the wood based roughage using lumber from thinning of oak and pitch pine (Pinus rigida). And the study also aimed to investigate a feed value evaluation of wood based roughages. To investigate the optimization condition of steam-digestion treatment for roughage, the wood chips of oak and pitch pine were steam-digestion treated at $160^{\circ}C$ under pressure 6 atm depending on treatment times (60 min, 90 min and 120 min) followed by the content of essential oils analyzed. The essential oil content of steam-digestion treated roughages for 90 min and 120 min were under 0.1 mL/kg. The evaluation of feed value was carried out from steam-digestion treated roughages for 90 min through feed chemical composition analysis, NRC (National research Council) modeling, ruminal degradability analysis and relative economic value analysis. The feed chemical compositions including DM (dry mater), CP (crude protein), EE (ether extract), NDF (neutral detergent fiber), ADF (acid detergent fiber), ADL (acid detergent lignin), NFC (nonfiber carbohydrate) in oak roughage were 95.4, 1.36, 3.11, 90.05, 83.85, 17.33, 6.50%, respectively, and in pitch pine roughage were 94.37, 1.33, 5.48, 87.89, 86.88, 30.56, 6.32%, respectively. Both roughages showed low level of protein and very high level of NDF. The TDN (total digestible nutrient) levels using NRC (2001) model in oak and pitch pine roughages were 40.55, 31.22%, respectively. The ruminal in situ dry matter degradability was higher in oak roughage (23.84%) than in pitch pine roughage (10.02%). The economic values of oak and pitch pine rough-ages were 235, and 210 \, respectively.

RUMEN DEGRADABILITY OF ITALIAN RYEGRASS (Lolium multiflorum, L) HARVESTED AT THREE DIFFERENT GROWTH STAGES IN SHEEP

  • Fariani, A.;Warly, L.;Matsui, T.;Fujihara, T.;Harumoto, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • This experiment was carried out in order to evaluate the chemical composition and rumen degradation characteristics of Italian ryegrass harvested at three different growth stages, i,e. pre-blooming, early-blooming and late-blooming. Degradation values were obtained by incubation of the samples using the nylon bag technique on the rumen of sheep fed a normal diet (Timothy hay with 200 g/d concentrate per head) for 12, 24, 36, 48 and 72 hours, respectively. Neutral detergent fiver (NDF) content was highest at late-blooming (64.4%) while no difference was found among the pre-blooming and early-blooming (49.4% vs 48.3%). However, acid detergent fiber (ADF) content markedly increased from 30.0% at pre-blooming to 35.4% and 46.4% at early-blooming and late-blooming, respectively. Lignin and silica contents also increased as advancing maturity of the grass, Rumen degradation of dry matter (DM) significantly reduced (p < 0.05) as advancing maturity of the grass. Ruman degradation cellulose and ADF at pre-blooming were significantly higher (p < 0.05) than those of early-blooming and late-blooming. However, no significant differences were observed among the early-blooming and late-blooming. With advancing maturity, rumen degradation of NDF and hemicellulose significantly reduced (p < 0.05) at the incubation times.

Estimation of Ruminal Degradation and Intestinal Availability of Crude Protein in the Animal-Origin Feedstuffs Using Mobile Nylon Bag Technique

  • Lee, S.C.;Moon, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.210-214
    • /
    • 1997
  • Ruminal degradation characteristics and intestinal availability of crude protein (CP) in four animal-origin feeds (fish meal, meat meal, viscera meal, feather meal) were estimated by mobile nylon bag technique. Three ruminally and duodenally cannulated Holstein dairy cows (average body wt. 550kg) fed a diet containing 40% concentrate and 60% orchard grass hay on a dry matter (DM) basis. Assuming that the outflow rate of diet in rumen is 5% per hour (k =0.05), contents of quickly degradable CP (QDP), slowly degradable CP (SDP), and undegradable CP (UDP) in the rumen were 27.6%, 9.4%, 63.0% for fish meal, 34.3% 28.1%, 37,6% for meat meal, 43.9%, 12.5%, 43.6% for viscera meal, and 14.4%, 15.8%, 69.8% for feather meal, respectively. Intestinal CP degradability was 51.0% for fish meal, 27.2% for meat meal, 37.9% for viscera meal and 56.2% for feather meal. Available UDP in the intestinal tract was contained 288 g, 217 g, 246 g and 423 g per kilogram DM of diet in fish meal, meat meal, viscera meal and feather meal, respectively.

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

A Nutritional Evaluation on Whole Cottonseed Removed Germination Ability by Heat-treatment

  • Hahm, Sahng-Wook;Son, Heyin;Baek, Seong-Gwang;Kwon, Hyeok;Kim, Wook;Oh, Young-Kyoon;Son, Yong-Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • In Korea, wide spread use of whole cottonseed, which is primarily a GMO plant imported from foreign countries and being fed to animals as raw state, has aroused concern that it may disturb the existing ecology of the country unless dispersion of the seed is under proper control. The objective of this study was to elucidate the changes in various nutritive parameters due to heat treatment and to determine the effective condition for removing germination ability of whole cottonseed (WCS). Of the various temperatures applied (76, 78, 80, 85, $100^{\circ}C$/30 min) $85^{\circ}C$ for 30 min was confirmed to be the lowest temperature treatment which resulted in a complete removal of the germination ability of WCS. Therefore, based on the determined temperature condition ($85^{\circ}C$ 30 min) we tried to examine the changes of various nutritional parameters, including nutrient composition, in vitro digestibilities and ruminal protein degradabilities, comparing raw whole cotton seed (RWCS) and heated whole cotton seed (HWCS). Some changes in amino acid composition were observed with heat treatment of WCS, but these were regarded to originate from the variation in plant quality and seed morphology, which are usually affected by different environmental factors during the vegetation period. As for fatty acid composition, no significant differences were observed to occur during heat treatment. However, WCS heated at $85^{\circ}C$ for 30 min in a circulating oven showed a significant decrease (p<0.05) of in situ rumen degradability in both dry matter (DM) and crude protein (CP), as compared to raw WCS. Overall results obtained in the study indicate that the heating condition used in this study, which was proven to be the most appropriate and economic to remove germination ability of WCS, may also improve the nutritional value of the ruminant with regard to reducing its protein degradability within the rumen.

Study on Nutritive Value and In Situ Ruminal Degradability of Whole Crop Rice Silage Prepared Using Chucheongbyeo (추청벼 총체 사일리지의 사료가치 및 부위별 In situ 분해율에 관한 연구)

  • Ki, Kwang Seok;Park, Su Bum;Lim, Dong Hyun;Park, Seong Min;Kim, Sang Bum;Kwon, Eung Gi;Lee, Se Young;Choi, Ki Chon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.4
    • /
    • pp.240-244
    • /
    • 2013
  • We investigated the nutritive value and ruminal in situ dry matter degradability of whole crop rice silage prepared using Chucheongbyeo (WCRS) as a roughage source for ruminants. The crude protein (7.54%), acid detergent fiber (29.63%), neutral detergent fiber (62.98%), and total digestible nutrient (TDN) (57.88%) found higher in WCRS than those of rice straw. Manganese content in the WCRS was the highest, followed by carbon, iron, zinc, and copper, but magnesium content was the lowest. Glutamic acid content in WCRS was the highest, followed by leucine, asparagine, alanine, valine, arginine, and methionine content was the lowest. We examined ruminal in situ digestibility from total whole crop rice (TWCR), rice husks containing rice (RHR), whole crop rice except RHR (WER), and husked grain (HG) for 3, 6, 12, 24, and 48 hours. Ruminal in situ digestibility in the HG was the highest, followed by RHR, TWCR, and WER. Therefore, we suggest that ruminal in situ degradability was influenced by parts of whole crop rice, and the content of manganese and glutamic acid were the highest in WCRS.