• Title/Summary/Keyword: Dry film thickness

Search Result 93, Processing Time 0.028 seconds

Formation and Properties of Electroplating Copper Pillar Tin Bump (구리기둥주석범프의 전해도금 형성과 특성)

  • Soh, Dea-Wha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.759-764
    • /
    • 2012
  • Copper Pillar Tin Bump (CPTB) was investigated for high density chip interconnect technology development, which was prepared by electroplating and electro-less plating methods. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM-1250 dry film photoresist (DFR), with copper electroplating for Copper Pillar Bump (CPB) formation firstly, and then tin electro-less plating on it for control oxidation. Electric resistivity and mechanical shear strength measurements were introduced to characterize the oxidation effects and bonding process as a function of thermo-compression. Electrical resistivity increased with increasing oxidation thickness, and shear strength had maximum value with $330^{\circ}C$ and 500 N at thermo-compression process. Through the simulation work, it was proved that the CPTB decreased in its size of conduction area as time passes, however it was largely affected by the copper oxidation.

Formation and Properties of Electroplating Copper Pillar Tin Bump on Semiconductor Process (반도체공정에서 구리기둥주석범프의 전해도금 형성과 특성)

  • Wang, Li;Jung, One-Chul;Cho, Il-Hwan;Hong, Sang-Jeen;Hwang, Jae-Ryong;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.726-729
    • /
    • 2010
  • Copper Pillar Tin Bump (CPTB) was investigated for high density chip interconnect technology development, which was prepared by electroplating and electro-less plating methods. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM-1250 dry film photoresist (DFR), with copper electroplating for Copper Pillar Bump (CPB) formation firstly, and then tin electro-less plating on it for control oxidation. Electric resistivity and mechanical shear strength measurements were introduced to characterize the oxidation effects and bonding process as a function of thermo-compression. Electrical resistivity increased with increasing oxidation thickness, and shear strength had maximum value with $330^{\circ}C$ and 500 N thermo-compression process. Through the simulation work, it was proved that when the CPTB decreased in its size, it was largely affected by the copper oxidation.

  • PDF

Changes in Postharvest Respiration, Growth, and Vitamin C Content of Soybean Sprouts under Different Storage Temperature Conditions

  • Lee Young-Sang;Kim Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.410-414
    • /
    • 2004
  • To understand the postharvest characteristics of soybean sprouts, 5-day-old sprouts were harvested, packed in PE film, and stored at 4, 12, and $20^{\circ}C$ for up to 4 days. In addition, the sprout respiration rate was measured after storage at 4, 8, 12, 16, 20, and $24^{\circ}C$ for up to 20h. During the first day of storage at $20^{\circ}C$, the sprouts maintained temperature-dependent longitudinal growth, especially of hypocotyl length; hypocotyl and root grew 0.8cm and 0.2cm, respectively. The hypocotyl thickness decreased by 11, 13, and $18\%$ after 4 days of storage at 4, 12, and $20^{\circ}C$, respectively. No temperature-dependent differences in fresh weight, dry weight, or water content were found, despite decreases of $3\%$ over the 4 days of storage. A significant postharvest decrease of $50\%$ in vitamin C content was observed in the sprouts stored at $20^{\circ}C$ for 3days. Based on the $CO_2$ production rate, the soybean sprouts exhibited an increase in respiration in proportion to the storage temperature; sprouts stored at 8, 12, 16, 20 and $24^{\circ}C$ showed approximately 2, 5, 6, 11, and 17 times, respectively, than the respiration rate of sprouts stored at $4^{\circ}C$. These results indicate the importance of low temperature storage during market circulation for minimizing the postharvest morphological and nutritional degradation of soybean sprouts.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process (Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가)

  • Kim, Young-Su;Kang, Min-Ho;Nam, Dong-Ho;Choi, Kang-Il;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.821-825
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO TFTs having different channel thicknesses deposited at low temperature. The ZnO films were deposited as active channel layer on $Si_3N_4/Ti/SiO_2/p-Si$ substrates by RF magnetron sputtering at $100^{\circ}C$ without additional annealing. Also, the ZnO thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film was deposited as gate insulator by PE-CVD at $150^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method. The fabricated devices have different threshold slop, field effect mobility and subthreshold slop according to channel thickness. This characteristics are related with ZnO crystal properties analyzed with XRD and SPM. Electrical characteristics of 60 nm ZnO TFT (W/L = $20\;{\mu}m/20\;{\mu}m$) exhibited a field-effect mobility of $0.26\;cm^2/Vs$, a threshold voltage of 8.3 V, a subthreshold slop of 2.2 V/decade, and a $I_{ON/OFF}$ ratio of $7.5\times10^2$.

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

Chemical Components of Korean Figs and Its Storage Stability (한국산(韓國産) 무화과(無花果)의 화학조성(化學組城) 및 저장성(貯藏性)에 관(關)하여)

  • Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.165-169
    • /
    • 1981
  • In order to obtain the basic data for processing adaptability of Korean figs, chemical analysis was carried out with 7 cultivar produced at Namhae and 3 cultivar transplanted from abroad. To prolong the storage period, Masan No.1 was packed with PE films with different thickness and stored at $2{\pm}0.5^{wcirc}C$. The results obtained were as follows; 1. Total sugar content, total acidity and pectin were $37{\sim}89.6%$(dry basis), $0.57{\sim}1.08%$, $4.30{\sim}7.79%$, respectively. 2. Changes in moisture content of control during storage were rapid. After 16 days it was decreased about 5% but in the lot packed with PE films. moisture content was slowly decreased. 3. Total sugar and acidity of the figs in the lot packed with 0.08 mm PE film were very slowly decreased but control was not. 4. Changes in hardness, fracturability during storage showed similar decreasing pattern but adhesiveness was increased.

  • PDF

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Changes of Lens Morphology and TBUT by Dehydration of Soft Contact Lens (소프트콘택트렌즈 건조로 인한 렌즈 형태 및 TBUT의 변화)

  • Park, Mijung;Lee, Yu-Na;Kang, Kyu Eun;Lee, Min Ha
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Purpose: This study was performed to evaluate the changes of lens morphology and tear stability during wearing soft contact lenses (SCLs) which were kept in drying condition like dry eye or became to be dried due to heedless care. Method: SCLs having different water content, thickness or material were rehydrated after being dehydrated artificially 2 or 4 times, and estimated their diameter and radius. Furthermore, the changes of tear film break-up time (TBUT) during SCL wearing were also measured. Result: Due to the dryness, the diameter of both 70% water content SCL and 59% water content SCL decreased, but the decrement was larger in 59% water content SCL. The more 59% water content SCL was dehydrated, the more its radius changed. However, the radius of 70% water content SCL did not change by 2 times dehydration and increased greatly by 4 times dehydration. The reduction of diameter of -1.00 D SCL was greater than that of -9.00 D SCL. Moreover, the radius of -1.00 D SCL increased depending on the frequency of dehydration but that of -9.00 D SCL did not changed. The diameter and radius changes of lotrafilcon B, silicone hydrogel lens, were less than those of hilafilcon B, copolymer of HEMA and N-vinyl pyrrolidone. TBUT during wearing SCLs decreased by wearing dehydrated SCLs. Conclusion: The diameter and radius of dehydrated SCLs as well as TBUT during wearing them were changed in spite of rehydration, which would be the important cause of uncomfortable feeling when people wore dehydrated SCL. The changes of SCL morphology and TBUT differed according to the water content, lens thickness and material.

  • PDF

Nitrogen Uptake, Yield and Gross Income of Sweet Corn as Affected by Nitrogen (질소시비량이 단옥수수의 질소흡수, 수량 및 조수입에 미치는 영향)

  • 이석순;최상집
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.83-89
    • /
    • 1990
  • A sweet corn hybrid, Golden Cross Bantam 70, was grown at 0, 5, 10, 15 and 20kg/10a of nitrogen (N) under the transparent P. E. film mulch to find the best yield evaluation method. Culm length, ear height, number of tillers increased and silking date was earlier by 1-2 days with increased N level. Leaf area index of main culm at harvest increased with increased N level. Marketable ears were divided into two classes according to the whole sale market price; the frist grade of which husked ear weight over 150g (unhusked ear weight 230g) and the second grade of which husked ear weight between 100 and 150g (unhusked ear weight between 180 and 230g). Average length, thickness, and weight of both grades of marketable ears were not different among the N levels. The proportion of the first grade increased with increased N level. However, total number and weight of marketable ears and gross income per 10a calculated considering weight and number of ears increased with increased N level. There were highly positive correlations between gross income and ear number or ear weight per l0a. The number and weight of marketable ears were underestimated at high N levels compared with gross income. Dry matter yield of stover ranged 740-963kg/10a and increased with increased N level with 20. 8-24.5% dry matter content. Rice black-streaked dwarf virus infection rate was 11.8-15.0%, but it was not related to N level. N concentration in ear was similar but that in stover increased with increased N level. Total N uptake increased but N recovery decreased with increased N level.

  • PDF