• Title/Summary/Keyword: Dry condition

Search Result 1,997, Processing Time 0.025 seconds

Analysis of Skin Characteristics of Twenty-five Healthy Adults to Develop Future Herbal Applications (한방 외용제 개발을 위한 건강한 성인 남녀 25명의 피부 특성 분석)

  • Eom, Ye-Jin;Hong, Chul-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2014
  • Objectives : The aim of present study was to investigate the skin characteristics of twenty-five healthy Korean subjects. These results can be used as basic data for the development of future herbal applications. Methods : Skin type, hair and scalp condition, water content, sebum content were investigated through the measurement of skin conditions and subjective questionnaire survey to know the skin characteristics of subjects. Results : Most of subject has 'Dry Skin' and they have trouble about their keratin(dandruff), scalp itching, alopecia, hair texture, scalp moisture. Conclusions : More studies are needed to investigate the skin characteristics of healthy Korean subjects.

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

Performance Evaluation of the Floor Impact Sound Insulation in Steel Framed Modular House (강재프레임 모듈러주택의 바닥충격음 성능평가)

  • Chun, Young-Soo;Bang, Jong-Dae;Kim, Gap-Deug;Yoo, Song-Lee
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • This paper presents various attempts to secure the floor impact sound insulation performance on the dry floor system of steel framed modular house that lately attracted domestic attention. Test results show that in the condition of using dry floor system of D31(D32), the light-weight impact noise performance records the top level in the floor impact sound insulation performance grading system. the heavy-weight floor impact noise performance meets the minimum sound level limit in the floor impact sound insulation performance grading system that enacted regulation on housing construction standards.

Milling and Rice Flour Properties of Tempering Condition on Moisture Content of Rice (쌀의 수분함량별 Tempering에 따른 제분 및 쌀가루의 특성)

  • 김형열;이병영;유효숙;함승시
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.76-80
    • /
    • 1999
  • Power consumption, mesh size, moisture content, color difference, amylogram of rice flour milled with the water soaked rice were compared with that of rice using dry pin mill process. The rice was soaked in 23, 24, 25, 26% of water for 10hr, independently. The more rice had moisture content, the less power consumption was needed. Power consumption to mill the rice soaked in 25% of water was less than that of dry rice by 6.8kW/100Kg. Moisture content of rice flour from the rice soaked with 25% of water was 2% higher than that of rice flour from the rice soaked with 23% of, water. Population of flour particle from the rice soaked with 24-25% of water was 45.7∼46.25 of 60 mesh, 9.7∼10.4% of 80∼100 mesh and 7.7∼8.1% of 100 mesh. Gelatinization temperature of rice flour from the rice soaked with 23% and 24∼25% of water was 65.70C and 64.50C, independently. Temperature of rice flour from the rice soaked with 23% 24∼25% of water sith minimum viscosity was 85.50C and 88.4∼88.70C, independently. Brightness and whiteness of the rice flour from the rice soaked with 24∼25% of water were 95.90∼95.95 and 905.82∼95.94, independently. Brightness and whiteness of the rice flour from the soaked rice were 1.2 and 1.7 higher than that of rice flour from the dry rice, independently.

  • PDF

New Approaches to Production of Turkish-type Dry-cured Meat Product "Pastirma": Salt Reduction and Different Drying Techniques

  • Hastaoglu, Emre;Vural, Halil
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.224-239
    • /
    • 2018
  • In this study, the possible changes in the quality characteristics of pastirma, Turkish-type dry-cured meat product, produced by using two different salts (NaCl-KCl) in a curing mixture and two different production techniques (natural and controlled condition) were examined. Moisture, pH, salt, sodium, potassium, TBA, fat, water activity, instrumental colour, texture, and sensory analyses were implemented in order to determine the possible effects of these applications. Fat, aw, pH, colour, tiobarbituric acid (TBA), texture, salt, Na and K values may allow these desired modifications in pastirma production to be limited. The substitution of 15% KCl instead of NaCl was acceptable in terms of the sensorial properties of the pastirma. However, the sensory analyses did not allow for using a higher KCl instead of NaCl because both the hardness and chewiness in the texture of the pastirma samples salted with 30% of KCl were not scored positively. Besides this, negative effects, which may occur during the pastirma production under natural conditions, can be eliminated by the production being under controlled conditions.

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Effect of Dampening Component on Printed Quality of Textbook in lithography printing (평판인쇄의 축임물 조성이 교과서 인쇄품질에 미치는 영향)

  • Koo, Chul-Whoi;Sim, Woo-Seok;Ha, Young Baeck
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.134-141
    • /
    • 2016
  • Dampening in printing is not only used with plain water but also used with various substances like dampening additive, in order to improve the wetting property by lowering the surface tension and to control material for modifing the ink transfer characteristic with proper emulsification. We have studied the printing quality according to these, looking into interrelationship among the dampening solution's pH, electrical conductivity and IPA content, prescribing the proper usage and minimum usage of fountain solution and dampening additive. In this study, it shows good result when mixing at the 7 wt% dampening with additive solution, which is result from the color density of printed sheets in accordance with the change of dampening solution condition. And the printed density value calculated 1 hour after printing, it shows relatively safe value at the etch liquid 4 wt% and IPA addition 2 wt%. The dry down at this test showed similar results regardless of various dampening conditions on coated paper, but in case of uncoated paper, the dry down showed a quite gap of different due to the fast penetration to the paper.

Frictional behaviour of epoxy reinforced copper wires composites

  • Ahmed, Rehab I.;Moustafa, Moustafa M.;Talaat, Ashraf M.;Ali, Waheed Y.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.165-178
    • /
    • 2015
  • Friction coefficient of epoxy metal matrix composites were investigated. The main objective was to increase the friction coefficient through rubber sole sliding against the epoxy floor coating providing appropriate level of resistance. This was to avoid the excessive movement and slip accidents. Epoxy metal matrix composites were reinforced by different copper wire diameters. The epoxy metal matrix composites were experimentally conducted at different conditions namely dry, water and detergent wetted sliding, were the friction coefficient increased as the number of wires increased. When the wires were closer to the sliding surface, the friction coefficient was found to increase. The friction coefficient was found to increase with the increase of the copper wire diameter in epoxy metal matrix composites. This behavior was attributed to the fact that as the diameter and the number of wires increased, the intensity of the electric field, generated from electric static charge increased causing an adhesion increase between the two sliding surfaces. At water wetted sliding conditions, the effect of changing number of wires on friction coefficient was less than the effect of wire diameter. The presence of water and detergent on the sliding surfaces decreased friction coefficient compared to the dry sliding. When the surfaces were detergent wetted, the friction coefficient values were found to be lower than that observed when sliding in water or dry condition.

Ballasting plan optimization for operation of a 2D floating dry dock

  • Yoon, Kyungho;Kim, Hyo-Jin;Yeo, Seungkyun;Hong, Younghwa;Cha, Jihye;Chung, Hyun
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.521-532
    • /
    • 2020
  • A floating dry dock is an advanced structure that can provide a solution for dry dock space shortages. The critical point in floating dock operation is compensating the deflection caused by a heavy payload by adjusting the water level in the ballast system. An appropriate ballasting plan warrants safe and precise construction on a floating dock. Particularly, in the case of a 2D floating dock, ballasting plan evaluation is crucial due to complex deformation modes. In this paper, we developed a method to calculate the optimal ballasting plan for accurate and precise construction on a 2D floating dock. The finite element method was used for considering the flexibility of the floating dock as well as the construction blocks. Through a gradient-based optimization algorithm, the optimal ballasting plan for the given load condition was calculated in semi-real time (5 min). The present method was successfully used for the actual construction of an offshore structure on the 2D floating dock.

광합성 미세조류인 Chlorococcum littorale을 이용한 이산화탄소의 생물학적 고정화

  • Kim, Tae-Ho;Sung, Ki-Dong;Lee, Jin-Suck;Lee, Joon-Yeop;Ohh, Sang-Jip;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.235-239
    • /
    • 1997
  • Chlorococcum littorale has been grown in high $CO_2$ concentrations to utilize $CO_2$ gas in the polluted air. The effect of incident light intensity on the specific growth rate is expressed by a photoinhibition model, showing half- saturation constant, $K_0\;as\;8\;(W/m^2)$ and inhibition constant, Ki as 35 $(W/m^2)$. The maximum specific growth rate was also estimated as 0.095 (1/day) under this condition. This strain maintained the optimum growth rate in 20% of $CO_2$ gas but 50% of input $CO_2$ gas is the maximum concentration considering the economical efficiency. The maximum Specific $CO_2$ consumption rate, $qCO_2$ was measured as 17.48 (mg $CO_2/g$ dry wt./day) in batch cultivation, 11.2 (mg $CO_2/g$ dry wt./day) in fed-batch cultivation and 10.87 (mg $CO_2/g$ dry wt./day) at 0.065 (1/day) of dilution rate in continuous cultivation. The chemical composition of the biomass obtained from this process showed 32.5% of protein, 27.5% of lipid, 16.5% of carbohydrate and ash 11.7%.

  • PDF