• Title/Summary/Keyword: Dry condition

Search Result 1,997, Processing Time 0.037 seconds

The Effects of Light on the Production of hGM-CSF in Transgenic Plant Cell Culture (빛 조사시간에 따른 형질전환된 담배세포 성장과 hGM-CSF의 생산에 미치는 영향)

  • 이재화;이재화;김영숙;홍신영;신윤지;서조은;권태호;양문식
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.568-572
    • /
    • 2001
  • Light is one of the most important environmental factors controlling plant physiology. The human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was produced from cell suspension cultures of transgenic tobacco under different light conditions (24 hr light, 18 hr light/dark cycle, dark). Under 24 hr light condition, cell growth was best and dry cell weight reached 14.4 g/L. Light did not influenced the secretion of total proteins. However, in the dark condition, the ratio of secreted total protein/dry cell weight was 1.5 fold higher than those of ethel conditions. Production of hGM-CSF was highest with 18 hr light condition and reached 496.5 ug/L. In addition, the content of hGM-CSf in secreted total proteins was 1.8 fold higher than that of 24 hr light condition, which is beneficial for the purificationof the protein.

  • PDF

Study on the Grinding Characteristic of MWCNT and Al2O3 Composite by Using Planetary Ball Mill (유성 볼밀을 사용한 MWCNT와 Al2O3의 혼합 분쇄 특성에 관한 연구)

  • Seo, Chang-Myung;Kim, Yeong-Geun;Ji, Myoung-Kuk;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.91-96
    • /
    • 2013
  • The present paper focuses on the fabrication of materials with higher thermal conductivity. Nanofluid is a novel transfer prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. The purpose of this study is making the nano-size particle. The experiment of MWCNT and $Al_2O_3$ was carried out using a planetary ball mill at several rotation speeds: 200 ~ 400 rpm. The results were examined using scanning electron microscope(SEM). In the case of the MWCNT, it could be more grinding into the small particle in the dry condition and it confirm in the case of the $Al_2O_3$ to be more grinding into the small particle contrary to the MWCNT in the wet condition. In the mixture grinding result of MWCNT and $Al_2O_3$, the dry condition showed the good result in low rotation speed than the wet condition.

Stability Analysis of Green Revetment Media Using Hydraulic Model (수리모형을 이용한 호안녹화기반재의 수리적 안정성 분석)

  • Kwon, Hyo Jin;Kim, Sung Hee;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.15-26
    • /
    • 2013
  • In recent years, river maintenance projects using natural methods have been continuously implemented in urban areas and methods emphasizing ecology are being developed and constructed in revetment areas. However, there is insufficient technical review on the hydraulic stability of those revetment methods during the event of flood. Therefore, a hydraulic analysis is necessary for the stream where revetments are applied. This study was conducted to develop an objective test method for the hydraulic stability of green revetment media. For this purpose, hydraulic model tests were performed for the green base materials for revetments. Tests were conducted using experimental devices for the hydraulic model which were installed to simulate the rapid current during the flood. Loss of soil by the hydraulic condition was compared and analyzed with that of dry green revetment media, and the evaluations were made on the corrosion resistance, tractive force, and contractile force. Test results showed that green revetment media had higher corrosion resistance in non-vegetation condition compared to dry green revetment media, and the loss of base materials by the rooting of vegetation showed significant reduction by the vegetation. In addition, results of the allowable tractive force of the base material indicated it is relatively stable in vegetation condition but scouring can occur in non-vegetation condition. Therefore, the development of vegetation in revetment areas is anticipated to be effective for the stability of revetment areas by reducing external forces interacting with the corrosion resistance and stream bank. The green revetment media in expected to contribute to the stability of revetment areas.

Optimization of Etching Profile in Deep-Reactive-Ion Etching for MEMS Processes of Sensors

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jae Hong
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • This paper reports the results of a study on the optimization of the etching profile, which is an important factor in deep-reactive-ion etching (DRIE), i.e., dry etching. Dry etching is the key processing step necessary for the development of the Internet of Things (IoT) and various microelectromechanical sensors (MEMS). Large-area etching (open area > 20%) under a high-frequency (HF) condition with nonoptimized processing parameters results in damage to the etched sidewall. Therefore, in this study, optimization was performed under a low-frequency (LF) condition. The HF method, which is typically used for through-silicon via (TSV) technology, applies a high etch rate and cannot be easily adapted to processes sensitive to sidewall damage. The optimal etching profile was determined by controlling various parameters for the DRIE of a large Si wafer area (open area > 20%). The optimal processing condition was derived after establishing the correlations of etch rate, uniformity, and sidewall damage on a 6-in Si wafer to the parameters of coil power, run pressure, platen power for passivation etching, and $SF_6$ gas flow rate. The processing-parameter-dependent results of the experiments performed for optimization of the etching profile in terms of etch rate, uniformity, and sidewall damage in the case of large Si area etching can be summarized as follows. When LF is applied, the platen power, coil power, and $SF_6$ should be low, whereas the run pressure has little effect on the etching performance. Under the optimal LF condition of 380 Hz, the platen power, coil power, and $SF_6$ were set at 115W, 3500W, and 700 sccm, respectively. In addition, the aforementioned standard recipe was applied as follows: run pressure of 4 Pa, $C_4F_8$ content of 400 sccm, and a gas exchange interval of $SF_6/C_4F_8=2s/3s$.

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

Biological and Ecological Considerations of the Freshwater Amphipod, Diporeia spp.

  • Song, Ki-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.328-336
    • /
    • 2003
  • Biological and ecological characteristics of Diporeia spp. are described including size, growth, life cycle, energy storage, temperature effect, bioturbation, feeding depth and sediment ingestion of Diporeia. Bioaccumulation and toxicity of organic contaminants and trace metals were reviewed in addition to an examination of the relationships among various condition indexes (i.e. wet weight, dry weight and body length) of Diporeia.

On-Site Conservation of the Underwater Objects Excavated (해저 발굴유물의 현장 보존처리)

  • Moon, Whan-Suk;Kim, Byung-Keun;Yang, Soon-Seok
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.133-150
    • /
    • 2004
  • Once the object has been excavated at underwater condition, it should be subjected to condition that may cause its deterioration. Therefore, it is important that the object immediately keeps stable environment. It means that the object was excavated at underwater and it exposed the deterioration condition, as soon as possible it was not dried on surface, especially metallic and organic material. Iron objects is particularly notorious for rapid disintegration that it kept wet or stored in a stable environment. Ceramics, glass and stone were handled carefully that it prevented physical damage by mishandling. Organic materials of wood, leather, rope, bone must not be allowed to dry out because the creaking, shrinking and warping are well known disintegration. Therefore objects is basis of keeping stable condition in on-site and then it will have to pass through a detailed conservation process in the laboratory.

  • PDF

An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure (공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구)

  • Hong, Seung-Jun;Lee, Ho-Guen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

Quality Properties Sintering Lightweight Aggregate for Structural Concrete according to manufacturing Condition (제조 조건에 따른 구조체용 소성 경량골재의 품질 특성)

  • 고대형;김재신;김상운;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.339-344
    • /
    • 2000
  • The purpose of this study is to evaluate qualities of lightweight aggregate for structural concrete according to mixing proportions, pelletizer condition, sintering condition and to choose the suitable main and sub material. Main material used paper sludge ash(PSA) and sub material used clay, fly-ash and paper sludge. The aggregates are sintered after granulating at the various condition. As the result of test, quality difference of aggregate showed clear according to the mixing proportions and sintering conditions. It was possible to manufacture lightweight aggregate for structural concrete that dry specific gravity was ranged about 0.9 to 1.4 also the test results of the aggregates showed same physical properties compared with abroad product as 10% granules crushing value from 5 or 10% and absorption percentage from 10 to 20%.

  • PDF