• Title/Summary/Keyword: Dry compaction

Search Result 184, Processing Time 0.023 seconds

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

A Study on the Engineering Characteristics of the plaster-soil uiiitures (석고플라스터 혼합토의 공학적 특성)

  • 도덕현;정성모
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.4
    • /
    • pp.53-60
    • /
    • 1985
  • The plaster mixed to loam and sandy soil from 4 to 12 percent by dry soil weight, and the compaction, permeability, CBR, unconfined compressive strength and freezingthawing test were performed The results obtained are summarized as follows; 1.The coefficient of permeability reduced sharply at the plaster content of 4 percent, and in the CBR test, the swelling ratio reduced by the increment of plaster content. 2.The addition of plaster increased the unconfined compressive strength by the cementing effect, and it was found that the optimum plaster content, existed with the soil type, which showed the maximum strength 3.It was possible to enhance the unconfined compressive strength of the gypsum-lime-soil mixtures when the optimum content of plaster was mixed to the hydrated lime. 4.In case of sandy soil, the relative frost heave decreased with the mixture of plaster, however in loam soil, the relative frost heave began to increase at the plaster content of 12 percent than non-treated soil. Therefore the optimum plaster content existed for protecting frost heave by the different soil type. 5.The above summarized results make it possible to expect the effects such as improvement of soil properties, decrement of permeability, increment of unconfined compressive strength, and protection of frost heave, etc, therefore, it is considered that it is possible to it is plaster as sub-base materials of road.

  • PDF

Soil modification by addition of cactus mucilage

  • Akinwumi, Isaac I.;Ukegbu, Ikenna
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.649-661
    • /
    • 2015
  • This research provides insight on the laboratory investigation of the engineering properties of a lateritic soil modified with the mucilage of Opuntia ficus-indica cladodes (MOFIC), which has a history of being used as an earthen plaster. The soil is classified, according to AASHTO classification system, as A-2-6(1). The Atterberg limits, compaction, permeability, California bearing ratio (CBR) and unconfined compressive strength of the soil were determined for each of 0, 4, 8 and 12% addition of the MOFIC, by dry weight of the soil. The plasticity index, optimum moisture content, swell potential, unconfined compressive strength and permeability decreased while the soaked and unsoaked CBR increased, with increasing MOFIC contents. The engineering properties of the natural soil, which only satisfies standard requirements for use as subgrade material, became improved by the application of MOFIC such that it meets the standard requirements for use as sub-base material for road construction. The effects of MOFIC on the engineering properties of the soil resulted from bioclogging and biocementation processes. MOFIC is recommended for use as a modifier of the engineering properties of soils, especially those with similar characteristics to that of the soil used in this study, to be used as a pavement layer material. It is more economical and environment-friendly than conventional soil stabilizers or modifiers.

A Study on the Strength Characteristics of Lime-Soil Mixtures. (석회혼합토의 강도특성에 관한 연구)

  • 조성정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-59
    • /
    • 1980
  • This study was conducted to obtain the most effective distribution of grain size and the optimum lime content for lime-soil stabilization. To achieve the aim, the change of consistency, the characteristics of compaction and unconfined compressive strength were tested by adding of 0, 4, 6, 8, 10 and 12 percent lime by weight for all soils adjusted by given ratios of sand to clay. The results obtained were as follows; 1. There was a tendency that the plasticity index of lime-soil mixture was decreased by increasing the amount of lime, whereas the liquid limit was varied irregularly and the plastic limit was increased. 2. With the addition of more lime, the optimum moisture content of lime-soil mixture was increased, and the maximum dry density was decreased. 3. The optimum lime content of lime-soil mixture was varied from soil to soil, and the less amount of small grain size, the less value of optimum lime content. 4. The optimum distribution of grain size for lime-soil mixture was in the soil, having the ratio of about 60 percent of cohesive clay and about 40 percent of sand by weight. 5. In the soil having fine grain size, the effect of curing appeared for long periods of time, whereas the increasing rate of unconfined compressive strength was great on the soil of coarse grain size in the earlier stage of curing period.

  • PDF

Effect of Cattle Slurry Applications on the Infertilie Sloped Land (경사 척박지에서 목초정착에 미치는 액비시용효과)

  • 최선식;김영진;윤세형;육완방
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.3
    • /
    • pp.230-237
    • /
    • 1994
  • This experiment was carried out to determine the effects of cattle sluny and zeolite application for the improvement of germination and establishment of grasses in infertile slopped land. The best establishment and winter survival of grasses were observed in the plot of cattle slurry application. The dry matter yield of grasses was increased by 12% in the plot of compaction + cattle slurry application when compared with control. Alteration effect of soil pH was v q high and the content of organic matter was increased by addition of the soil conditioner.

  • PDF

Application for Functional Construction Materials of Artificial Soil Manufactured Using Coal Bottom Ash (석탄 저회로 제조한 인공토양의 기능성 건설재 적용 가능성)

  • Kim, Kangduk;Lee, Yeongsaeng
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.300-306
    • /
    • 2014
  • To recycle coal bottom ash(denoted here as CBA) generated from thermal power plants as a functional construction material, artificial soil(denoted as AS) containing CBA with dredged soil(denoted as DS) at a ratio(wt%) of 70 : 30 was manufactured by means of material engineering with sintering in a rotary kiln at $1125^{\circ}C$ using a green body formed via extrusion processing. The properties of the soil mechanics of the AS and the as-received CBA were analyzed and compared. Compaction testing results determined an optimum moisture content of the AS and CBA at 18%. During these tests, the maximum dry unit weights of the materials were similar, at 1.57 and 1.58 $t/m^3$, respectively. The compressive strength levels of the AS and CBA concrete specimens were 5.1 and 5.4 $t/m^3$, respectively, both of which increased after materials engineering processing. In a consolidation test, the compression index of the AS and CBA was found to be $0.114{\pm}0.001$ in both cases. The values were similar regardless of the materials engineering processes, but during the consolidation of AS, its coefficient was higher than that of the CBA materials.

Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.180-185
    • /
    • 2015
  • Low-cost ceramic membrane supports with pore sizes in the range of $0.52-0.62{\mu}m$ were successfully prepared by uniaxial dry compaction method using inexpensive raw materials including kaolin, bentonite, talc, sodium borate, and alkaline-earth oxides in carbonate forms (e.g., $MgCO_3$, $CaCO_3$, and $SrCO_3$). The prepared green supports were sintered at $1000^{\circ}C$ for 8 hr in air. The effect of alkaline-earth oxide additives on the flexural strength of clay-based membrane supports was investigated. The porosity of the clay-based membrane supports was found to be in the range of 33-34%. The flexural strength of the clay-based membrane supports with 1% alkaline-earth carbonates was found to be in the range of 42.8-52.7 MPa. The addition of alkaline-earth carbonates to clay-based membrane supports resulted in large increases (47-80%) in the flexural strength of the membrane supports, compared to that of membrane supports without alkaline-earth carbonates. The typical flexural strength of the clay-based membrane support with 1% $SrCO_3$ was 52.7 MPa at 33.8% porosity.

Effect of slag on stabilization of sewage sludge and organic soil

  • Kaya, Zulkuf
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.689-707
    • /
    • 2016
  • Soil stabilization is one of the useful method of ground improvement for soil with low bearing capacity and high settlement and unrequired swelling potential. Generally, the stabilization is carried out by adding some solid materials. The main objective of this research was to investigate the feasibility of stabilization of organic soils and sewage sludge to obtain low cost alternative embankment material by the addition of two different slags. Slags were used as a replacement for weak soil at ratios of 0%, 25%, 50%, 75% and 100%, where sewage sludge and organic soil were blended with slags separately. The maximum dry unit weights and the optimum water contents for all soil mixtures were determined. In order to investigate the influence of the slags on the strength of sewage sludge and organic soil, and to obtain the optimal mix design; compaction tests, the California bearing ratio (CBR) test, unconfined compressive strength (UCS) test, hydraulic conductivity test (HCT) and pH tests were carried out on slag-soil specimens. Unconfined compressive tests were performed on non-cured samples and those cured at 7 days. The test results obtained from untreated specimens were compared to tests results obtained from soil samples treated with slag. Laboratory tests results indicated that blending slags with organic soil or sewage sludge improved the engineering properties of organic or sewage sludge. Therefore, it is concluded that slag can be potentially used as a stabilizer to improve the properties of organic soils and sewage sludge.

Engineering behavior of expansive soils treated with rice husk ash

  • Aziz, Mubashir;Saleem, Masood;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.173-186
    • /
    • 2015
  • The rapid urbanization in Pakistan is creating a shortage of sustainable construction sites with good soil conditions. Attempts have been made to use rice husk ash (RHA) in concrete industry of Pakistan, however, limited literature is available on its potential to improve local soils. This paper presents an experimental study on engineering properties of low and high plastic cohesive soils blended with 0-20% RHA by dry weight of soil. The decrease in plasticity index and shrinkage ratio indicates a reduction in swell potential of RHA treated cohesive soils which is beneficial for problems related to placing pavements and footings on such soils. It is also observed that the increased formation of pozzolanic products within the pore spaces of soil from physicochemical changes transforms RHA treated soils to a compact mass which decreases both total settlement and rate of settlement. A notable increase in friction angle with increase in RHA up to 16% was also observed in direct shear tests. It is concluded that RHA treatment is a cost-effective and sustainable alternate to deal with problematic local cohesive soils in agro-based developing countries like Pakistan.

A Study on the Engineering Characteristics of PVA (Polyvinyl Alcohol) Fiber-Cement-Soil Mixtures (PVA 시멘트 혼합토의 공학적 특성 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Ki-Sung;Yoo, Kyeong-Wan;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • This study aimed to investigate the engineering characteristics of PVA fiber-cement-soil mixture used to prevent or reduce brittle failure of cement-soil mixtures due to the tensile strength increase from the addition of a synthetic fiber. The engineering characteristics of PVA fiber-cement-soil mixtures composed of PVA fiber, soil, and a small amount of cement was analysed on the basis of the compaction test, the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The specimens were manufactured with soil, cement and PVA fiber. The cement contents was 2, 4, 6, 8, and 10%, and the fiber contents was 0.4, 0.6, 0.8, and 1.0% by the weight of total dry soil. To investigate the strength characteristics depending on age, each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of PVA fiber-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The basic data were presented for the application of PVA fiber-cement-soil mixtures as construction materials.