• 제목/요약/키워드: Dry Forage Intake Suppression

검색결과 9건 처리시간 0.027초

The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats - A Review

  • Sunagawa, Katsunori;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.159-169
    • /
    • 2016
  • The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of $NaHCO_3$ due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most water consumption occurring in the second hour. The cause of this thirst sensation during the second hour of dry forage feeding period was not hypovolemia brought about by excessive salivation, but rather increases in plasma osmolality due to the ruminal absorption of salt from the consumed feed. This suggests the water intake following dry forage feeding is determined by the level of salt content in the feed.

Physiological Factors Depressing Feed Intake and Saliva Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Ishii, Y.;Nagamine, I.;Shinjo, A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권1호
    • /
    • pp.60-69
    • /
    • 2007
  • Ruminants eating dry forage secrete large volumes of saliva which results in decreased plasma volume (hypovolemia) and the loss of $NaHCO_3$ from the blood. The present research investigated whether or not hypovolemia and the loss of $NaHCO_3$ from the blood in goats brought about by dry forage feeding actually depresses feed intake and saliva secretion, respectively. The present experiment consisted of three treatments (NI, ASI, MI). In the control treatment (NI), a solution was not infused. In the ASI treatment, i.v. infusion of artificial parotid saliva was initiated 1 h before feeding and continued for the entire 2 h feeding period. In the MI treatment, iso-osmotic mannitol solution was infused. The NI treatment showed that hematocrit and plasma total protein concentration were increased due to decreased circulating plasma volume brought about by feeding. In the ASI treatment, the fluid and $NaHCO_3$ that were lost from the blood because of a feeding-induced acceleration of saliva secretion was replenished with an intravenous infusion of artificial parotid saliva. This replenishment lessened the levels of suppression on both feeding and parotid saliva secretion. When only the lost fluid was replenished with an intravenous infusion of iso-osmotic mannitol solution in the MI treatment, the degree of feeding suppression was lessened but the level of saliva secretion suppression was not affected. These results indicate that the marked suppression of feed intake during the initial stages of dry forage feeding was caused by a feeding-induced hypovolemia while the suppression of saliva secretion was brought about by the loss of $NaHCO_3$ from the blood due to increased saliva secretion during the initial stages of feeding.

The Main Suppressing Factors of Dry Forage Intake in Large-type Goats

  • Thang, Tran Van;Sunagawa, Katsunori;Nagamine, Itsuki;Kishi, Tetsuya;Ogura, Go
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권3호
    • /
    • pp.341-352
    • /
    • 2012
  • In large-type goats that were fed on dry forage twice daily, dry forage intake was markedly suppressed after 40 min of feeding had elapsed. The objective of this study was to determine whether or not marked decreases in dry forage intake after 40 min of feeding are mainly caused by the two factors, that is, ruminal distension and increased plasma osmolality induced thirst produced by dry forage feeding. Six large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 2 to 6 years, weighing $85.1{\pm}4.89kg$) were used in two experiments. The animals were fed ad libitum a diet of roughly crushed alfalfa hay cubes for 2 h from 10:00 to 12:00 am during two experiments. Water was withheld during feeding in both experiments but was available for a period of 30 min after completion of the 2 h feeding period. In experiment 1, saliva lost via the esophageal fistula was replenished by an intraruminal infusion of artificial parotid saliva (RIAPS) in sham feeding conditions (SFC) control, and the treatment was maintained under normal feeding conditions (NFC). In experiment 2, a RIAPS and non-insertion of a balloon (RIAPS-NB) control was conducted in the same manner as the SFC control of experiment 1. The intraruminal infusion of hypertonic solution and insertion of a balloon (RIHS-IB) treatment was carried out simultaneously to reproduce the effects of changing salt content and ruminal distension due to feed entering the rumen. The results of experiment 1 showed that due to the effects of multiple dry forage suppressing factors when feed boluses entered the rumen, eating rates in the NFC treatment decreased (p<0.05) after 40 min of feeding and cumulative dry forage intake for the 2 h feeding period reduced to 43.8% of the SFC control (p<0.01). The results of experiment 2 indicated that due to the two suppressing factors of ruminal distension and increased plasma osmolality induced thirst, eating rates in the RIHS-IB treatment were, as observed under NFC, reduced (p<0.05) and cumulative dry forage intake for the 2 h feeding period decreased to 34.0% of the RIAPS-NB control (p<0.01). The combined effects of ruminal distension and increased plasma osmolality accounted for 77.5% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality induced thirst are the main factors in the suppression of dry forage intake in large-type goats.

Salivary Secretion Volume Related Ruminal Distension and Suppression of Dry Forage Intake in Large-type Goats

  • Thang, Tran Van;Sunagawa, Katsunori;Nagamine, Itsuki;Ogura, Go
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권8호
    • /
    • pp.1100-1111
    • /
    • 2011
  • Two experiments under sham feeding conditions were conducted to determine whether or not ruminal distension brought about by feed boluses entering the rumen is a factor in the marked suppression of feed intake after 40 min of feeding. In experiment 1, a comparison was made between the intraruminal insertion of a water filled balloon (RIB) treatment and normal control (non-insertion of a balloon, NIB). In experiment 2, saliva lost due to sham feeding conditions was replenished via an intraruminal infusion of iso-osmotic artificial saliva. A comparison of dry forage intake was then conducted between the intraruminal replenishment of iso-osmotic artificial saliva and insertion of a balloon (RRIAS-RIB) treatment, and the intraruminal replenishment of iso-osmotic artificial saliva and non-insertion of a balloon (RRIAS-NIB) control. In experiment 1, eating rates in the RIB treatment 30 min after the commencement of feeding tended to be lower than those in the NIB control. In comparison with the NIB control, cumulative dry forage intake in the RIB treatment was 29.7% less (p<0.05) upon conclusion of the 2 h feeding period. The secreted saliva weight in the NIB control and the RIB treatment during the 2 h feeding period was 53.2% and 60.9% total weight of the boluses, respectively. In experiment 2, eating rates in the RRIAS-RIB treatment 30 min after the commencement of feeding was significantly lower (p<0.05) than those in the RRIAS-NIB control. Cumulative dry forage intake in the RRIAS-RIB treatment was a significant 45.5% less (p<0.05) compared with that in the RRIAS-NIB control upon conclusion of the 2 h feeding period. The secreted saliva weight in the RRIAS-NIB control and the RRIAS-RIB treatment during the 2 h feeding period was 54.1% and 64.2% total weight of the boluses, respectively. The level of decrease in dry forage intake in the RRIAS-RIB treatment of experiment 2 was larger than that in the RIB treatment of experiment 1. In the present experiments, due to the sham feeding conditions, the increases in osmolality of ruminal fluid and plasma, and a decrease in ruminal fluid pH which are normally associated with feeding were not observed. The results indicate that the marked decrease in feed intake observed in the second hour of the 2 h feeding period is related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding.

Deprivation of Esophageal Boluses and Dry Forage Intake in Large-type Goats

  • Van Thang, Tran;Sunagawa, Katsunori;Nagamine, Itsuki;Kato, Seiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권9호
    • /
    • pp.1174-1183
    • /
    • 2010
  • In goats fed on dry forage twice a day, an esophageal fistula was used to investigate the physiological factors present in the marked suppression of dry forage intake that occurs after 40 min of feeding. The animals used in this study were five large-type male esophageal- and ruminal-fistulated goats. Roughly crushed alfalfa hay cubes with any large remaining chunks removed were used as feed for this research. The study was conducted under both normal feeding conditions (NFC) and sham feeding conditions (SFC). In the NFC control, the esophageal fistulae were closed by plugs and the animals ate dry forage in the normal manner. In the SFC treatment, before starting the experiment the plugs for closing the esophageal fistula were removed and the cannulae for collecting boluses were fitted into the fistulae. Therefore, the esophageal boluses were removed via an esophageal fistula before they entered the rumen. In the NFC control, eating rates sharply decreased in the first 40 min of feeding and were subsequently maintained at low levels. However, eating rates in the SFC treatment remained high after 40 min of the feeding period had elapsed and the goats ate continuously during the 2 h feeding period. In comparison with the NFC control ($1,794{\pm}203.80\;g$/2 h), cumulative dry forage intake in the SFC treatment ($3,182{\pm}381.69\;g$/2 h) was 77.4% greater (p<0.05) upon conclusion of the 2 h feeding period. In the SFC treatment, cumulative bolus output ($6,804{\pm}469.92\;g$/2 h) was about twofold the cumulative dry forage intake due to cumulative salivary secretion volume ($3,622{\pm}104.13\;g$/2 h) upon conclusion of the 2 h feeding period. The result indicates that large amounts of secreted saliva during dry forage feeding act in conjunction with consumed feed to form the ruminal load responsible for ruminal distension. The increased plasma total protein concentrations were higher in the SFC treatment than in the NFC control. However, plasma and ruminal fluid osmolalities increased in the NFC control during and after feeding but were mostly unchanged in the SFC treatment. In comparison with the NFC control ($3,440{\pm}548.04\;g$/30 min), thirst level in the SFC treatment ($1,360{\pm}467.02\;g$/30 min) was 60.5% significantly less (p<0.05) upon conclusion of the 30 min drinking period. The results of the present study indicate that In the second hour of the 2 h feeding period, dry forage intake is regulated by factors produced when boluses enter the rumen.

An Intravenous Replenishment of Salivary Components and Dry Forage Intake in Freely Drinking Large-type Goats

  • Sunagawa, K.;Hashimoto, T.;Izuno, M.;Hashizume, N.;Okano, M.;Nagamine, I.;Hirata, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.538-546
    • /
    • 2008
  • Large-type goats eating dry forage secreted large volumes of saliva which resulted in the loss of $NaHCO_3$ from the blood and decreased plasma volume (hypovolemia). This research investigated whether or not the loss of $NaHCO_3$ from the blood and hypovolemia brought about by dry forage feeding actually depresses feed intake in large-type goats under free drinking conditions. The present experiment consisted of three treatments (NI, ASI, MI). All treatments in this experiment were carried out under free drinking conditions. In the NI control (NI), a solution was not infused. In the ASI treatment, i.v. infusion of artificial saliva was initiated 2 h before feeding and was continued for a total of 3 h concluding 1 h after the commencement of the feeding perod. In the MI treatment, mannitol solution was infused to replenish only water lost from the blood in the form of saliva. The hematocrit and plasma total protein concentrations during feeding in the NI control were observed to be higher than pre-feeding levels. This indicated that dry forage feeding-induced hypovolemia was caused by the accelerated secretion of saliva during the initial stages of feeding in freely drinking large-type goats. Increases in hematocrit and plasma total protein concentrations due to dry forage feeding were significantly suppressed by the ASI treatment. While hematocrit during feeding in the MI treatment was significantly lower than the NI control, plasma total protein concentrations were not different. From these results, it is clear that the MI treatment was less effective than the ASI treatment in mitigating the decreases in plasma volume brought about by dry forage feeding. This indicates that plasma volume increased during dry forage feeding in the ASI treatment which inhibited production of angiotensin II in the blood. The ASI treatment lessened the levels of suppression on dry forage feeding, but the MI treatment had no effect on it under free drinking conditions. The results indicate that despite the free drinking conditions, increases in saliva secretion during the initial stages of dry forage feeding in large-type goats caused $NaHCO_3$ to be lost from the blood into the rumen which in turn caused a decrease in circulating plasma volume and resulted in activation of the renin-angiotensin system and thus feeding was suppressed.

Effect of Parotid Saliva Secretion on Dry Forage Intake in Goats

  • Sunagawa, Katsunori;Nakatsu, Yoshifumi;Nishikubo, Yoriko;Ooshiro, Takeshi;Naitou, Kouta;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권8호
    • /
    • pp.1118-1125
    • /
    • 2003
  • Research was carried out to clarify whether a suppression of dry forage intake during the early stages of feeding in ruminants is caused by feeding induced hypovolemia which is produced by the accelerated secretion of parotid saliva. Goats with a parotid fistula were fed roughly crushed alfalfa hay cubes, commercial ground concentrate feed and $NaHCO_3$ twice daily (10:00-12:00, 16:00-18:00). The animals were free access to drinking water all day prior to, during and after experiments. The animals were intraruminally infused every day prior to the morning feeding period with parotid saliva collected from the parotid fistula over a 24 h period. The present experiment consisted of two treatments, non-infusion (RNI) and intraruminal infusion of parotid saliva (RSF). In the RSF treatment, 4-5 kg of parotid saliva (280-290 mOsm/l) collected over a 24 h period was intraruminally infused 1 h prior to the commencement of the morning feeding. During feeding, eating and parotid saliva secretion rates were measured. Blood samples were also periodically collected from the jugular vein. During and after 2 h feeding, water intakes were measured, respectively. These measurements were used to define thirst levels. It is thought that rumen fill in the RSF treatment was higher than the RNI treatment. Plasma osmolality in the RSF treatment increased in the first half of the 2 h feeding period due to the intraruminal infusion of parotid saliva. Therefore, parotid saliva secretion rates in the RSF treatment were lower than the RNI treatment for 30 min period from 30 to 60 min after the commencement of feeding. On the other hand, plasma total protein concentration and hematocrit in the RSF treatment decreased by 3.2 and 3.3% prior to the commencement of feeding due to the intraruminal infusion of parotid saliva. In the first half of the 2 h feeding period, plasma total protein concentration and hematocrit in the RSF treatment showed a tendency to decrease compared to the RNI treatment. Thirst level in the RSF treatment during feeding was approximately 31.3% less than the RNI treatment. Upon the completion of the 2 h feeding period, cumulative feed intake in the RSF treatment was significantly larger (19.7%) than the RNI treatment. The results suggest that a suppression of dry forage intake during the early stages of feeding in goats is partly caused by feeding induced hypovolemia, which is produced by the accelerated secretion of parotid saliva.

Controlling Factors of Feed Intake and Salivary Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Nagamine, I.;Shiroma, S.;Shinjo, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권10호
    • /
    • pp.1414-1420
    • /
    • 2005
  • The purpose of this research was to determine whether or not feeding induced hypovolemia (decreases in plasma volume) and decreases in plasma bicarbonate concentration caused by loss of $NaHCO_3$ from the blood, act to suppress feed intake and saliva secretion volumes during the initial stages of feeding in goats fed on dry forage. The animals were fed twice a day at 10:30 and at 16:00 for 2 h each time. Prior to the morning feeding, the collected saliva (3-5 kg) was infused into the rumen. During the morning 2 h feeding period (10:30 to 12:30), the animals were fed 2-3 kg of roughly crushed alfalfa hay cubes. At 16:00, the animals were fed again with 0.8 kg of alfalfa hay cubes, 200 g of commercial ground concentrate and 20 g of sodium bicarbonate. In order to compensate for water or $NaHCO_3$ lost through saliva during initial stages of feeding, a 3 h intravenous infusion (17-19 ml/min) of artificial mixed saliva (ASI) or mannitol solution (MI) was begun 1 h prior to the morning feeding and continued until the conclusion of the 2 h feeding period. The physiological state of the goats in the present experiment remained unchanged after parotid gland fistulation. Circulating plasma volume decreases caused by feeding (estimated by increases in plasma total protein concentration) were significantly suppressed by the ASI and MI treatments. During the first 1 h of the 2 h feeding period, plasma osmolality in the ASI treatment was the same as the NI (non-infusion control) treatment, while plasma osmolality in the MI treatment was significantly higher. In comparison to the NI treatment, cumulative feed intake levels for the duration of the 2 h feeding period in the ASI and MI treatments increased markedly by 56.6 and 88.3%, respectively. On the other hand, unilateral cumulative parotid saliva secretion volume following the termination of the 2 h feeding period in the ASI treatment was 50.7% higher than that in the NI treatment. MI treatment showed the same level as the NI treatment. The results of the present experiment proved that the humoral factors involved in the suppression of feeding and saliva secretion during the initial stages of feeding in goats fed on dry forage, are feeding induced hypovolemia and decrease in plasma $HCO_3^-$ concentration caused by loss of $NaHCO_3$ from the blood.

The Role of Brain Somatostatin in the Central Regulation of Feed, Water and Salt Intake in Sheep

  • Sunagawa, Katsunori;Weisinger, Richard S.;McKinley, Michael J.;Purcell, Brett S.;Thomson, Craig;Burns, Peta L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권7호
    • /
    • pp.929-934
    • /
    • 2001
  • The physiological role of brain somatostatin in the central regulation of feed intake in sheep was investigated through a continuous intracerebroventricular (ICV) infusion of somatostastin 1-28 (SRIF) at a small dose of $5{\mu}g/0.2ml/hr$ for 98.5 hours from day 1 to day 5. Sheep (n=5) were fed for 2 hours once a day, and water and 0.5 M NaCI solution were given ad libitum. Feed, water and salt intake were measured during ICV infusion of artificial cerebrospinal fluid (CSF) and SRIF. The feed intake during SRIF infusion on days 2 to 5 increased significantly compared to that during CSF infusion. Water intake, when compared to that during CSF infusion, only increased significantly on day 4. NaCI intake during SRIF infusion was not different from that during CSF infusion. Mean arterial blood pressure (MAP) and heart rate during SRIF infusion were not different from those during CSF infusion. The plasma concentrations of Na, K, Cl, osmolality and total protein during SRIF infusion were also not different from those values during CSF infusion.There are two possible mechanisms, that is, the suppression of brain SRIF on feed suppressing hormones and the direct actions on brain mechanisms controlling feed intake, explaining how SRIF works in the brain to bring about increases in feed intake in sheep fed on hay. The results indicate that brain SRIF increases feed intake in sheep fed on hay.