• Title/Summary/Keyword: Dry Cooler

Search Result 32, Processing Time 0.028 seconds

A Study on Application of the Free Cooling System with Dry Cooler Using Economic Evaluation (경제성 평가를 이용한 프리쿨링시스템의 국내 적용성 연구)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Hee-Min;Kim, Young-Min
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.50-55
    • /
    • 2015
  • Recently, because of the deterioration of the nuclear generating station and increase of the cooler and heater, energy problem is increasing. To save the energy, the free cooling system is developed. The free cooling system is that cool the water to use cooled air in winter and is used in industrial process or data center. Yoon check the energy of free cooling system with dry cooler in korea. In this study, the value of the free cooling system with dry cooler is confirmed through using the NPV that is economic evaluation. when temperature degree of the cooled water is 10, in Chuncheon and Seoul the value is the most high. When temperature degree of the cooled water is 20, in Ulsan the value is the most high. As the result, because the using the temperature degree of the cooled water is high in the industrial process, the free cooling system is advantageous in korea.

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Cooling Performance of a Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기의 냉방성능)

  • Moon, Hyun-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.462-469
    • /
    • 2008
  • A regenerative evaporative cooler has been fabricated and tested for the evaluation of cooling performance. The regenerative evaporative cooler is a kind of indirect evaporative cooler comprised of multiple pairs of dry and wet channels. The air flowing through the dry channels is cooled without any change in the humidity and at the outlet of the dry channel a part of air is redirected to the wet channel where the evaporative cooling takes place. The regenerative evaporative cooler fabricated in this study consists of the multiple pairs of finned channels in counterflow arrangement. The fins and heat transfer plates were made of aluminum and brazed for good thermal connection. Thin porous layer coating was applied to the internal surface of the wet channel to improve surface wettability. The regenerative evaporative cooler was placed in a climate chamber and tested at various operation condition. The cooling performance is found greatly influenced by the evaporation water flow rate. To improve the cooling performance, the evaporation water flow rate needs to be minimized as far as the even distribution of the evaporation water is secured. At the inlet condition of $32^{\circ}C$ and 50%RH, the outlet temperature was measured at $22^{\circ}C$ which is well below the inlet wet-bulb temperature of $23.7^{\circ}C$.

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

An Experimental Study on the Performance of a Cross-Flow-Type, Indirect Evaporative Cooler Made of Paper/Plastic Film (종이와 플라스틱 필름의 이종 재질로 구성된 직교류형 간접증발소자의 성능에 대한 실험적 연구)

  • Kwon, Mi-Hye;Go, Min-Geon;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.475-483
    • /
    • 2015
  • In Korea, a typically hot and humid summer means that air-conditioners consume a large quantity of electricity; accordingly, the simultaneous usage of an indirect evaporative cooler may reduce the sensible-heat level and save the amount of electricity that is consumed. In this study, the heat-transfer and pressure-drop characteristics of an indirect evaporative cooler made of paper/plastic film were investigated under both dry and wet conditions; for the purpose of comparison, an indirect evaporative cooler made of plastic film was also tested. Our results show that the indirect evaporative efficiencies under a wet condition are greater than those under a dry condition, and the efficiencies of the paper/plastic sample (109% to 138%) are greater than those (67% to 89%) of the plastic sample; in addition, the wet-surface, indirect evaporative efficiencies of the paper/plastic sample are 32% to 36% greater than those of the plastic sample. Further, the wet-surface pressure drops of the paper/plastic sample are 13% to 23% larger than those of the plastic sample, and this might have been caused by the surface roughness of the samples. A rigorous heat-transfer analysis revealed that, for the plastic sample, 30% to 37% of the wet channels remained dry, whereas all of the channels were wet for the paper/plastic sample.

Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper (플라스틱/종이 재질의 간접 증발 소자와 재생 증발 소자 성능 비교)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.88-98
    • /
    • 2016
  • The Korean summer is hot and humid, and air-conditioners consume considerable amounts of electricity. In such cases, the simultaneous use of indirect evaporative coolers may help reduce the sensible heat and save electricity. In this study, heat transfer and pressure drop characteristics of indirect or regenerative evaporative coolers made from plastic/paper are investigated. The results showed that heat and mass transfer model based on the ${\epsilon}-NTU$ method predicted the indirect evaporation efficiencies, cooling capacities and pressure drops adequately. Both for indirect or regenerative evaporative cooler, the indirect evaporation efficiency increased with increasing dry channel inlet temperature or relative humidity. The indirect evaporation efficiency of the regenerative evaporative cooler was larger than that of the indirect evaporative cooler.

Analysis of Cooling Performance of a Compact Regenerative Evaporative Cooler (밀집형 재생증발식 냉방기의 냉각 성능 분석)

  • Park, Min-Hee;Moon, Seung-Jae;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.316-324
    • /
    • 2016
  • This study investigated a compact regenerative evaporative cooler (REC). To achieve practical applications of an REC, it is very important to consider the compactness as well as the cooling performance. Therefore, a prototype of the REC was designed and fabricated to improve the compactness by reducing the length through the insertion of fins in both the dry and wet channels. The REC prototype was tested in terms of performance evaluation under various operating conditions. An analytical model was also developed to analyze the effects of the axial conduction through the solid body of the REC, the wetness of the surface in the wet channel, and the thermal capacity of the evaporation water flow. The model was validated by comparing the results of a simulation with experimental data. The numerical simulation was based on the model to analyze the performance of the REC and to suggest methods to improve the cooling performance of the REC. Finally, the performance of the present REC was compared to that obtained in previous experimental studies. The results showed that the REC prototype in the present study is the most compact and achieves the highest cooling performance.

Comparison of Effects of Two Aging Methods on the Physicochemical Traits of Pork Loin

  • Jin, Sang-Keun;Yim, Dong-Gyun
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.844-851
    • /
    • 2020
  • The objective of this study was to compare effects of two different aging methods on physical, chemical, and microbial traits of pork loin: Dry and wet-aged meat was hung in the cooler at 8±1℃ and 85±2.1% humidity for 14 days, while wet-aged meat was immersed in a 3.5% salt solution of brine in vacuum pouches. On day 7, pH and moisture content were higher in dry-aged loins than in wet-aged, while drip loss and total plate counts (p<0.05) were lower on day 14. As aging continued, the pH and drip loss of dry-aged loins decreased, while their total plate counts and water holding capacity (WHC) increased (p<0.05). After 7 and 14 days of aging, redness in dry-aged loins was higher than that in wet -aged muscles (p<0.05). On day 14 of aging, hardness, chewiness, and adhesiveness were lower in dry-aged pork loin as compared to those in wet-aged samples (p<0.05). Consequently, the results suggested that dry and wet aging methods differently affects meat quality traits of pork loin.