• Title/Summary/Keyword: Drug transport study

Search Result 69, Processing Time 0.031 seconds

Electrotransport of Levodopa through Skin: Permeation at Low pH (전류를 이용한 Levodopa의 경피전달: 낮은 pH에서의 투과)

  • Jo, Jung-Eun;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • In our previous work on levodopa delivery at pH 2.5 using iontophoresis, we found that cathodal delivery showed higher permeation than anodal delivery and electroosmosis plays more dominant role than electrorepulsion. In this work, we studied the transdermal transport of levodopa at very low pH (pH=1.0) where all levodopa molecules are cations, and evaluated some factors which affect the transdermal transport. The transport study at pH 2.5 was also conducted for comparison. The contribution of electrorepulsion and electroosmosis on flux was also evaluated. Using stable aqueous solution, the effect of electrode polarity, current density, current type and drug concentration on transport through skin were studied and the results were compared. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel containing levodopa. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin were used. Current densities applied were 0.2, 0.4 or $0.6\;mA/cm^2$. Contrary to the pH 2.5 result, anodal delivery showed higher flux, indicating that electrorepulsion is the dominant force for the transport, overcoming the electroosmotic flow which is acting against the direction of electrorepulsion. Cumulative amount of levodopa transported was increased as the current density or drug concentration was increased. When amount of current dose was constant, continuous current was more beneficial than pulsed current in promoting levodopa permeation. Similar transport results were obtained when hydrogel was used as the donor phase. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules. The results also indicate that, only at very low pH like pH 1.0, electrorepulsion can be the dominant force over the electroosmosis in the levodopa transport.

Photoresponsive Nanocontainers with Ordered Porous Channels

  • Cho, Wansu;Kwon, Youngje;Park, Chiyoung
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.149-155
    • /
    • 2019
  • Controlled mass transport in response to stimuli is essential for drug carriers. The complexity of the signaling system under physiological conditions has led researchers to develop precise nanocontainers that respond to stimuli in the physiological environment. Owing to several reasons, soft nanocontainers such as liposomes and micelles have been investigated for use as drug delivery systems. However, such carriers often suffer from the undesired leakage of drug molecules. In contrast, inorganic nanocontainers are robust, and their surfaces can be easily functionalized. For example, mesoporous silica nanoparticles equipped with gatekeeper molecules are increasingly being used for the controlled release of drug molecules in response to the desired stimuli. Since the development of the first hybrid nanocontainer comprising molecular machines, multiple versions of such gatekeeper systems featuring significantly improved stability and precise response to stimuli have been reported. In this study, various methods for incorporating photoresponsive nanocontainers with porous channels are developed.

Change in Cationic Amino Acid Transport System and Effect of Lysine Pretreatment on Inflammatory State in Amyotrophic Lateral Sclerosis Cell Model

  • Latif, Sana;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.498-505
    • /
    • 2021
  • Amyotrophic lateral sclerosis (ALS) is a lethal neurological disorder characterized by the deterioration of motor neurons. The aim of this study was to investigate alteration of cationic amino acid transporter (CAT-1) activity in the transport of lysine and the pretreatment effect of lysine on pro-inflammatory states in an amyotrophic lateral sclerosis cell line. The mRNA expression of cationic amino acid transporter 1 was lower in NSC-34/hSOD1G93A (MT) than the control cell line (WT), lysine transport is mediated by CAT-1 in NSC-34 cell lines. The uptake of [3H]L-lysine was Na+-independent, voltage-sensitive, and strongly inhibited by inhibitors and substrates of cationic amino acid transporter 1 (system y+). The transport process involved two saturable processes in both cell lines. In the MT cell line, at a high-affinity site, the affinity was 9.4-fold higher and capacity 24-fold lower than that in the WT; at a low-affinity site, the capacity was 2.3-fold lower than that in the WT cell line. Donepezil and verapamil competitively inhibited [3H]L-lysine uptake in the NSC-34 cell lines. Pretreatment with pro-inflammatory cytokines decreased the uptake of [3H]L-lysine and mRNA expression levels in both cell lines; however, the addition of L-lysine restored the transport activity in the MT cell lines. L-Lysine exhibited neuroprotective effects against pro-inflammatory states in the ALS disease model cell lines. In conclusion, studying the alteration in the expression of transporters and characteristics of lysine transport in ALS can lead to the development of new therapies for neurodegenerative diseases.

Development of a Human Mammary Epithelial Cell Culture Model for Evaluation of Drug Transfer into Milk

  • Kimura Soichiro;Morimoto Keiko;Okamoto Hiroshi;Ueda Hideo;Kobayashi Daisuke;Kobayashi Jun;Morimoto Yasunori
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.424-429
    • /
    • 2006
  • In the present study, a human mammary epithelial cell (HMEC) culture model was developed to evaluate the potential involvement of carrier-mediated transport systems in drug transfer into milk. Trypsin-resistant HMECs were seeded on $Matrigel^{circledR}-coated$ filters to develop monolayers of functionally differentiated HMEC. Expression of the specific function of HMEC monolayers was dependent of the number of trypsin treatments. Among the monolayers with different numbers of treatment (treated 1 to 3 times), the monolayer treated 3 times (3-t-HMEC monolayer) showed the highest maximal transepithelial resistance and expression of $\beta-casein$ mRNA as an index of differentiation. Transport of tetraethylammonium (TEA) across the 3-t-HMEC monolayer in the basolateral-to-apical direction was significantly higher than that in the apical-to-basolateral direction (p<0.05), whereas such directionality was not observed for p-aminohippurate, suggesting the existence of organic cation transporters, but not organic anion transporters. In fact, expression of mRNAs of human organic cation transporter (OCT) 1 and 3 were detected in the 3-t-HMEC monolayer. These results indicate that the 3-t-HMEC monolayer is potentially useful for the evaluation of carrier-mediated secretion of drugs including organic cations into human milk.

The Role of Excipients in Iontophoretic Drug Delivery: In vitro Iontophoresis of Isopropamide and Pyridostigmine through Rat Skin and Effect of Ion-pair Formation with Organic Anions

  • Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • The iontophoretic delivery across rat skin of quaternary ammonium salts (isopropamide: ISP, pyridostigmine: PS), which are positively charged over a wide pH range, was measured ill vitro. The study showed that: (a) iontophoresis significantly enhanced delivery of ISP and PS compared to respective passive transport; (b) delivery of ISP and PS was directly proportional to the applied continuous direct current density over the range of $0-0.69\;mA/cm^2;$ (c) delivery of ISP and PS was also proportional to the drug concentration in the donor compartment over the range of $0-2{\time}l0^{-2}M:$ (d) sodium ion in the donor compartment inhibited the drug transport possibly due to decreasing the electric transference number of the drug; (e) delivery of ISP and PS increased as the pH of the donor solution increased over the pH range 2-7 suggesting permselective nature of the epidermis, and inhibition of the transference number of the drugs by hydronium ion; (f) some organic anions such as taurodeoxycholate, salicylate and benzoate which form lipophilic ion-pair complexes with ISP inhibited the delivery of ISP. The degree of inhibition by the organic anions was linearly proportional to the extraction coefficient $(K_e)$ of ISP from the partition system with each counteranion between phosphate buffer (pH 7.4) and n-octanol. For PS, however, taurodeoxycholate, but not salicylate and benzoate inhibited the iontophoretic delivery. It suggests that not only sodium ion and hydronium ion but also the counteranions which form lipophilic ion-pairs with quaternary ammonium drugs are not favorable components in formulating the donor solution of the drugs to achieve an effective iontophoretic delivery.

  • PDF

Optimization of Experimental Conditions for In vitro P-glycoprotein Assay Using LLC-GA5 Cells

  • Ahn, A-Ra;Oh, Ju-Hee;Lee, Joo-Hyun;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.363-366
    • /
    • 2010
  • Identification of compounds that function as P-glycoprotein (P-gp) substrates or inhibitors can facilitate the selection and optimization of new drug candidates. The purpose of this study is to optimize the experimental conditions for in vitro P-gp assay using LLC-GA5 cells, which is a well-known transformant cell line derived by transfecting LLC-PK1 with human MDR1. The amount of rhodamine123 transported by the LLC-GA5 and LLC-PK1 cells was evaluated under the following experimental conditions: 3 different types of transport media, colchicine pretreatment or nontreatment of the cells in the culture media, and with and without poly-L-lysine coating of the culture plates. The assay sensitivity was found to considerably differ depending on the diluents used in the transport media. P-gp-mediated transport in LLC-GA5 cells was most clearly characterized in the Hanks' balanced salt solution based transport media. The sensitivity of P-gp-mediated transport was not changed by colchicine pretreatment or poly-L-lysine coating of the culture plates.

Studies on Permeation Enhancers for Ocular Peptide Delivery Systems: Pz-peptide as a Novel Enhancer of Ocular Epithelial Paracellular Permeability in the Pigmented Rabbit

  • Chung, Youn-Bok;Lee, Vincnet H.L.
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.49-57
    • /
    • 1994
  • The objective of this study was to determine whether Pz-peptide, an enhancer of hydrophilic solute permeability in the intestine, could elevate the paracellular permeability of the cornea and conjunctiva in the pigmented rabbit. The in vitro penetration of four hydrophilic solutes, mannitol (MW 182), fluorescein (MW 376), FD-4 (FITC-dextran, 4 KDa), and FD-10 (FITC-dextran, 10 KDa) across the pigmented rabbit cornea and conjunctiva was studied either in the presence or absence of 3 mM enhancers. Drug penetration was evaluated using the modified Ussing chamber. The conjunctiva was more permeable than the cornea to all four markers. EDTA and cytochalasin B showed higher effects on marker transport than Pz-peptide, but Pz-peptide elevated the corneal transport of mannitol, fluoresein, and FD-4 by 50%, 26%, and 50%, respectively, without affecting FD-10 transport. Possibly due to the leakier nature of the conjunctiva, 3 mM Pz-peptide elevated the transport of only FD-4 by about 45%, without affecting the transport of other markers. Furthermore, the transport of Pz-peptide itself across the cornea and conjunctiva increased with increasing concentration in the 1-5 mM range, suggesting that Pz-peptide enhanced its own permeability, possibly by elevating paracellular permeability. Effects of ion transport inhibitors on Pz-peptide transport were then investigated. PZ-peptide penetration was not changed by mucosal addition of $10\;{\mu}M$ amiloride or $10\;{\mu}M$ hexamethylene amiloride, inhibiting serosal $Na^{+}$ exit by $100\;{\mu}M$ ouabain, or replacing $Na^{+}$ with choline chloride in the mucosal side buffer. These results seggested that Pz-peptide enhanced the paracellular permeability of rabbit cornea and conjunctiva and further indicate that ion transporters were not involved in the Pz-peptide induced elevation of paracellular marker permeability.

  • PDF

Preparation and Mucoadhesive Test of CSA-loaded Liposomes with Different Characteristics for the Intestinal Lymphatic Delivery

  • Kim, Hyong-Ju;Lee, Chang-Moon;Lee, Yong-Bok;Lee, Ki-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.516-521
    • /
    • 2005
  • Drug delivery to the lymphatic system may be important in terms of the treatment with lymphatic involvement, such as tumor metastases and immunization. Especially, drug transport via the intestinal lymphatics after oral administration has been attracted lots of interests. The purpose of this study was to prepare cyclosporin A (CSA)-loaded liposomes, with different characteristics, and evaluate their mucoadhesivity. Three liposome preparations were formulated: cationic stearylamine liposomes (SA-Lip), anionic phosphatidylserine liposomes (PS-Lip), Polymer (chitosan)-coated liposomes (CS-Lip), and characterized. The liposome preparations were found to be spherical in shape, with PS-Lip being the smallest. The liposome preparations exhibited entrapment efficiencies in the order: PS-Lip $(52.5{\pm}2.9%)$ > SA-Lip $(48.8{\pm}3.3%)$ > CS-Lip $(41.7{\pm}4.2%)$. Finally, mucoadhesive tests were carried out using rat intestine, with SA-Lip (67%) showing the best adhesive rate of the three preparations (PS-Lip: 56%, CS-Lip: 61%). These results suggest that a positive charge on the surface of drug carriers may be an important factor for the intestinal drug delivery.

Taurine Transporter Activity in the Human Colon Carcinoma cell Line(HT-29) is Decreased during Cell Differentiation (인체 소장상피세포주(HT-29)의 분화단계에 따른 타우린수송체 활성의 변화)

  • 박태선
    • Journal of Nutrition and Health
    • /
    • v.33 no.6
    • /
    • pp.660-667
    • /
    • 2000
  • Previous studies on the effect of age on intestinal taurine transport in animals have invariably shown a decline in the activity of the transport system with increasing age. In the present study changes in taurine transporter activity were observed during cell differentiation in the human colon carcinoma cell line HT-29 This cell line exhibits various enterocytic characteristics when differentiated and therefore has frequently been used to study the characteristcs and regulation of nutrient and drug absorption in the small intestine at the cellular level. Pre-treatment of the cells with $\beta$-alanine(10mM) reduced the taurine transport activity to 33% of the value for the control cells(p<0.05) which implies that taurine and $\beta$-alanine share a common $\beta$-amino acid transport system for their celluar uptake in the HI-29 was continued until 21 days post seeding. Kinetic studies of the taurine transporter were conducted in the HT-29 cell line with varying taurine concentration(5-60$\mu$M) in the uptake medium Both Vmax and the Michaelis-Menten constant(Km) of taurine transporter were decreased as differentiation of the HT-29 cell line was progressed ; Vmax of the taurine transporter in cells incubated for 4, 14 and 21 days post seeding was 2.79$\pm$3.4m 16.89$\pm$1.74, and 0.85$\pm$0.08 and 0.32$\pm$0.01nmol.mg protein-1 .30min-1 respectively(p<0.001) and Km was 42.3$\pm$3.4, 16.89$\pm$1.74, and 11.2$\pm$3.0$\mu$M respectively (p<0.01) These results indicate that the activity of sodium dependent active taurine transport system in the HT-29 cell line is decreased as confluent cells are differentiated. This phenomenon in cell culture system corresponds well with the earlier observation of lower intestinal taurine transport activity in suckling rats compared to that in adult animals although direct relationship of cell differentiation with in vivo aging process needs further verification.

  • PDF

Characterization of Protein L-isoaspartyl Methyltransferase Purified from Porcine Testis

  • Kikyung Jung;Mihee Shin;Hyungmee Han;Seogyeon Kang;Kim, Taegyun;Sungryoul Hong;Kim, Seunghee;Lee, Youngkeun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.136-136
    • /
    • 1998
  • L-asparaginyl and L- aspartyl residues in proteins are subject to spontaneous degradation reactions generating isomerized and racemized aspartyl derivatives. Proteins containing L-isoaspartyl and D-aspartyl residues usually have altered structures and diminished biological activities. These residues can be recognized and be repaired to normal L-aspartyl residues by protein L-isoaspartyl methyltransferase(PIMT), which is present at high levels in testis. Although testicular PIMT have been shown to be involved in either sperm motility or sperm maturation, it may play an important role in the repair of damaged sperm proteins during the prolonged period of epididymal transport and storage. In the present study, as a initial step toward elucidating the function of protein carboxylmethylation in testis, we purified PIMT from porcine testicular cytosol as a momeric 27,000 Da species by ammonium sulfate precipitation, DEAE-sephacel chromatography, SAH-liganded affinity chromatography, and gel filtration chromatography. The optimum pH for the reaction was 6.0. $K_{m}$ values of the enzyme for the S-adenosyl-L-methionine (SAM), synthetic oligopeptide(VYP-L-isoD-HA) and histone type II-As were 1.0 ${\mu}$M, 33.2 ${\mu}$M and 276 ${\mu}$M respectively. Consequently, properties of the porcine testicular PIMT is similar to that of other mammalian PIMTs.

  • PDF