• 제목/요약/키워드: Drug targeting

검색결과 331건 처리시간 0.027초

In Vitro Evaluation of Three Positional Isomers of mono-PEGylated Salmon Calcitonin

  • Jung, J.Y.;Youn, Y.S.;Oh, S.H.;Hong, S.T.;Lee, J.E.;Lee, S.O.;Lee, K.C.
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.300.1-300.1
    • /
    • 2003
  • Salmon calcitonin (sCT) is a therapeutic polypeptide hormone consisting of 32 amino acids (3432 Da). As with other bioactive peptide therapeutics, however, therapeutic use of sCT has been limited due to the problems of short circulating half-life and rapid proteolytic degradation. To get over this problem, the three positional isomers of mono-PEGylated sCT were prepared and among these, the best drug candiate for nasal application was chosen. (omitted)

  • PDF

Synthesis and Characterization of HPMC Derivatives as Novel Duodenum-Specific Coating Agents

  • Huang Yuan;Zheng ling Ii;Liu Jun;Zhang Zhi rong
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.364-369
    • /
    • 2005
  • HPMC (Hydroxypropyl methylcellulose) was chemically modified, using maleic anhydrides, to obtain pH-sensitive HPMCAM (Hydroxypropyl methylcellulose acetate maleate) polymers for use as novel duodenum-specific coating agents. The pharmaceutical properties of HPMCAM, such as film forming, acid values, pH-sensitive values, water vapor permeability, tensile strength and Tg, were investigated, and found to show good film forming properties. The pH­sensitive values were 3.0 to 3.7. In vitro results demonstrate that HPMCAM could completely suppress drug release within 2h in a simulated gastric fluid (pH 1.2) and rapidly release the drug in a simulated pathological duodenal fluid (pH 3.4). These results indicate that HPMCAM might be a useful material for a duodenum-specific drug delivery system.

Targeting of Large-molecule Radiopharmaceuticals across the Blood-brain Barrier Using Endogenous Transport Systems

  • Lee, Hwa-Jeong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.94-95
    • /
    • 2002
  • Drug targeting to the central nervous system (CNS) is the limiting factor in CNS drug development because most of drug do not cross the brain capillary endothelial wall, which forms the blood-brain barrier (BBB) in vivo. One strategy for drug targeting to the brain is to use endogenous BBB transport systems. (omitted)

  • PDF

Synthesis and Characterization of the Tumor Targeting Mitoxantrone-Insulin Conjugate

  • Liu, Wen-Sheng;Yuan-Huang;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • 제26권11호
    • /
    • pp.892-897
    • /
    • 2003
  • Anticancer drugs have serious side effects arising from their poor malignant cells selectivity, Since insulin receptors highly express on the cytomembrane of some kind of tumor cells, using insulin as the vector was expected to reduce serious side effects of the drugs. The objective of this study was to evaluate the tumor targeting effect of the newly synthesized mitoxantrone-insulin conjugate (MIT-INS) with the drug loading of 11.68%. In vitro stability trials showed MIT-INS were stable in buffers with different pH (2-8) at $37^{\circ}C$ within 120 h (less than 3% of free MIT released), and were also stable in mouse plasma within 48 h (less than 1 % of free MIT released). In vivo study on tumor-bearing mice showed that, compared with MIT [75.92 $\mu g \cdot$ h/g of the area under the concentration-time curve (AUC) and 86.85 h of mean residence time (MRT)], the conjugates had better tumor-targeting efficiency with enhanced tumor AUC of 126.53 1l9 h/g and MTR of 151.95 h. The conjugate had much lower toxicity to most other tissues with targeting indexes ($TI^c$) no larger than 0.3 besides good tumor targeting efficiency with $TI^c$ of 1.67. The results suggest the feasibility to promote the curative effect in ca.ncer chemotherapy by using insulin as the vector of anti-cancer drugs.

Synthesis, Characterization and In Vitro Evaluation of Triptolide-lysozyme Conjugate for Renal Targeting Delivery of Triptolide

  • Zheng, Qiang;Gong, Tao;Sun, Xun;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1164-1170
    • /
    • 2006
  • A triptolide-lysozyme (TP-LZM) conjugate was synthesized to achieve renal specific delivery and to reduce the side effects of triptolide. Triptolide was coupled to lysozyme through succinic via an ester bond with an average coupling degree of 1 mol triptolide per 1 mol lysozyme. The lysozyme can specifically accumulate in the proximal tubular cells of the kidney, making it a potential carrier for targeting drugs to the kidney. The structure of triptolide succinate (TPS) was confirmed by IR, $^{1}H-NMR$, MS and UV. The concentrations of triptolide in various samples were determined by reversed-phase high-performance liquid chromatography (HPLC). In this study, the physicochemical and stability profiles of TP-LZM under various conditions were investgated the stability and releasing profiles of triptolide-lysozyme (TP-LZM) under various conditions. In vitro release trails showed triptolide-lysozyme was relatively stable in plasma (less than 30% of free triptolide released) and could release triptolide quickly in lysosome (more than 80% of free triptolide released) at $37^{\circ}C$ for 24 h. In addition, the biological activities of the conjugate on normal rat kidney proximal tubular cells (NRK52E) were also tested. The conjugate can effectively reduce NO production in the medium of NRK52E induced by lipopolysaccharide (LPS) but with much lower toxicity. These studies suggest the possibility to promote curative effect and reduce its extra-renal toxicity of triptolide by TP-LZM conjugate.

Mitochondria-targeting theranostics

  • Kang, Han Chang
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.221-234
    • /
    • 2018
  • Background: Interest in subcellular organelle-targeting theranostics is substantially increasing due to the significance of subcellular organelle-targeting drug delivery for maximizing therapeutic effects and minimizing side effects, as well as the significance of theranostics for delivering therapeutics at the correct locations and doses for diseases throughout diagnosis. Among organelles, mitochondria have received substantial attention due to their significant controlling functions in cells. Main body: With the necessity of subcellular organelle-targeting drug delivery and theranostics, examples of mitochondria-targeting moieties and types of mitochondria-targeting theranostics were introduced. In addition, the current studies of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems were summarized. Conclusion: With the current issues of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems, their potentials and alternatives are discussed.

Preparation and stability of N-terminal PEGylated Recombinant Human Epidermal Growth Factor

  • Na, Dong-Hee;Youn, Yu-Seok;Park, Chong-Jeon;Lee, Sang-Deuk;Lee, Kang-Choon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.415.3-416
    • /
    • 2002
  • To improve the stability of recombinant human epidermal growth factor (rhEGF) as therapeutic agent. the N-terminal PEGylated rhEGF (N-PEG-rhEGF) was prepared by site-specific bioconjugation and the stability was investigated in rat skin wound homogenates. Two different N-PEG-rhGEFs (N-PEG5K- and N-PEG20K-rhEGF) were successfully prepared with the yields of above 70%. The PEGylation site was directly confirmed by determining the molecular mass of Lys-C digested samples using MALDI- TOF MS. (omitted)

  • PDF