• 제목/요약/키워드: Drug targeting

검색결과 331건 처리시간 0.023초

티로신 키나아제 저해제의 간독성에 대한 고찰 (Reviews on the Hepatotoxicity of Tyrosine Kinase Inhibitors)

  • 한지민;곽혜선
    • 한국임상약학회지
    • /
    • 제29권4호
    • /
    • pp.223-230
    • /
    • 2019
  • Background: Small-molecule tyrosine kinase inhibitors (TKIs) have had major impacts on anticancer therapy by targeting the catalytic activities of dysregulated tyrosine kinases. TKIs have not presented traditional toxicities; however, some serious adverse effects, including hepatotoxicity, have been documented in clinical trials and post-marketing surveillance. Although TKI-induced hepatotoxicity can cause severe clinical complications in patients, the underlying mechanism is still unclear. Methods: Studies on TKI-induced hepatotoxicity were identified by Pubmed search, and relevant articles were reviewed. Results: Immunoallergic reaction, cytochrome P (CYP) 450 polymorphisms, and formation of reactive metabolites are under consideration as mechanisms of TKI-induced hepatotoxicity. Host protein-drug metabolite conjugates are recognized as antigens by class II major histocompatibility complexes and are believed to cause liver injuries. Polymorphisms in CYP, which influences TKI metabolism, can slow TKI metabolism and may induce development of hepatotoxicity. The formation of reactive metabolites during drug metabolism can induce hepatotoxicity by directly causing cytotoxicity, leading to cell dysfunction, and indirect toxicity by mediating secondary immune reactions. Concurrent use of various medications with TKI can also cause hepatotoxicity by affecting drug transporter or enzyme activities. Conclusion: Periodic monitoring of patients taking TKIs and risk/benefit reassessments though post marketing surveillance are necessary to prevent hepatotoxicity.

'폐의약품 수거사업'을 통해 지역약국으로 회수된 폐의약품의 분석 (An Investigation of Medications Returned to the Community Pharmacies through "Drug-Take Back" Program)

  • 천부순
    • 약학회지
    • /
    • 제58권2호
    • /
    • pp.107-111
    • /
    • 2014
  • Unused medication disposal is a problem due to the cost of disposing as well as potential risk of inadvertent dosing. Investigating medication returns is expected to suggest areas for targeting interventions to reduce medication waste. Therefore, the aim of this study was to examine types of medications and identify the expiration date of the medications returned to the community pharmacies through "Drug-Take Back" program. Method: From October 10, 2012 to November 14, 2012, the medications returned to the 58 community pharmacies in Korea were examined. Results: A total of 22,160 g of pill medications were collected; 52.8% for prescription drugs and 47.2% for non-prescription drugs, respectively. The weight of the expired pill medications was more than 5 times that of the non-expired pill medications. On the other hand, 6,168 ml of liquid medications were returned; 80.0% for prescription medication and 20.0% for non-prescription medications, respectively. Of the total oral liquid medications, the volume of the expired medications was more than 5 times that of the non-expired medications. Conclusion: The majority of medications returned to the community pharmacies were prescription drugs rather than non-prescription drugs. In addition, most of the drugs were expired when they returned.

The MicroRNA-551a/MEF2C Axis Regulates the Survival and Sphere Formation of Cancer Cells in Response to 5-Fluorouracil

  • Kang, Hoin;Kim, Chongtae;Ji, Eunbyul;Ahn, Sojin;Jung, Myeongwoo;Hong, Youlim;Kim, WooK;Lee, Eun Kyung
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2019
  • microRNAs regulate a diverse spectrum of cancer biology, including tumorigenesis, metastasis, stemness, and drug resistance. To investigate miRNA-mediated regulation of drug resistance, we characterized the resistant cell lines to 5-fluorouracil by inducing stable expression of miRNAs using lenti-miRNA library. Here, we demonstrate miR-551a as a novel factor regulating cell survival after 5-FU treatment. miR-551a-expressing cells (Hep3B-lenti-miR-551a) were resistant to 5-FU-induced cell death, and after 5-FU treatment, and showed significant increases in cell viability, cell survival, and sphere formation. It was further shown that myocyte-specific factor 2C is the direct target of miR-551a. Our results suggest that miR-551a plays a novel function in regulating 5-FU-induced cell death, and targeting miR-551a might be helpful to sensitize cells to anti-cancer drugs.

Potential Antimicrobial Applications of Chitosan Nanoparticles (ChNP)

  • Rozman, Nur Amiera Syuhada;Yenn, Tong Woei;Ring, Leong Chean;Nee, Tan Wen;Hasanolbasori, Muhammad Ariff;Abdullah, Siti Zubaidah
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1009-1013
    • /
    • 2019
  • Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory activities on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.

Synergistic anticancer activity of resveratrol in combination with docetaxel in prostate carcinoma cells

  • Lee, Sang-Han;Lee, Yoon-Jin
    • Nutrition Research and Practice
    • /
    • 제15권1호
    • /
    • pp.12-25
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The study was conducted to investigate the efficacy of the combination treatment of phytochemical resveratrol and the anticancer drug docetaxel (DTX) on prostate carcinoma LNCaP cells, including factors related to detailed cell death mechanisms. MATERIALS/METHODS: Using 2-dimensional monolayer and 3-dimensional spheroid culture systems, we examined the effects of resveratrol and DTX on cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential, apoptosis, and necroptosis by MTT, flow cytometry, and Western blotting. RESULTS: At concentrations not toxic to normal human prostate epithelial cells, resveratrol effectively decreased the viability of LNCaP cells depending on concentration and time. The combination treatment of resveratrol and DTX exhibited synergistic inhibitory effects on cell growth, demonstrated by an increase in the sub-G0/G1 peak, Annexin V-phycoerythrin positive cell fraction, ROS, mitochondrial dysfunction, and DNA damage response as well as concurrent activation of apoptosis and necroptosis. Apoptosis and necroptosis were rescued by pretreatment with ROS scavenger N-acetylcysteine. CONCLUSIONS: We report resveratrol as an adjuvant drug candidate for improving the outcome of treatment in DTX therapy. Although the underlying mechanisms of necroptosis should be investigated comprehensively, targeting apoptosis and necroptosis simultaneously in the treatment of cancer can be a useful strategy for the development of promising drug candidates.

Advancements in Antiviral Drug Development: Comprehensive Insights into Design Strategies and Mechanisms Targeting Key Viral Proteins

  • Wang Hangyu;Li Panpan;Shen Jie;Wang Hongyan;Wei Linmiao;Han Kangning;Shi Yichen;Wang Shuai;Wang Cheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1376-1384
    • /
    • 2024
  • Viral infectious diseases have always been a threat to human survival and quality of life, impeding the stability and progress of human society. As such, researchers have persistently focused on developing highly efficient, low-toxicity antiviral drugs, whether for acute or chronic infectious diseases. This article presents a comprehensive review of the design concepts behind virus-targeted drugs, examined through the lens of antiviral drug mechanisms. The intention is to provide a reference for the development of new, virus-targeted antiviral drugs and guide their clinical usage.

Early adulthood: an overlooked age group in national sodium reduction initiatives in South Korea

  • Park, Sohyun;Lee, Jounghee;Kwon, Kwang-Il;Kim, Jong-Wook;Byun, Jae-Eon;Kang, Baeg-Won;Choi, Bo Youl;Park, Hye-Kyung
    • Nutrition Research and Practice
    • /
    • 제8권6호
    • /
    • pp.719-723
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: South Korean's sodium consumption level is more than twice the upper limit level suggested by the WHO. Steep increases in the prevalence of hypertension and cardiovascular disease in Korea necessitate more effective sodium reduction programs. This study was conducted in order to compare sodium intake-related eating behaviors and key psychosocial factors according to age group and gender. SUBJECTS/METHODS: Using an online survey, a total of 1,564 adults (20-59 years old) considered to be geographically representative of South Korea were recruited and surveyed. The major outcomes were perceived behaviors, knowledge, intentions, and self-efficacy related to sodium intake. RESULTS: The results show that perceived behavior and level of self-efficacy related to low sodium consumption differed by age and gender. Female participants showed better behavior and intention towards low sodium intake than male counterparts. Young participants in their 20s showed the lowest intention to change their current sodium intake as well as lowest self-efficacy measures. CONCLUSIONS: Future sodium reduction interventions should be developed with tailored messages targeting different age and gender groups. Specifically, interventions can be planned and implemented at the college level or for workers in their early career to increase their intention and self-efficacy as a means of preventing future health complications associated with high sodium intake.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • 제29권2호
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

Identification of druggable genes for multiple myeloma based on genomic information

  • Rahmat Dani Satria;Lalu Muhammad Irham;Wirawan Adikusuma;Anisa Nova Puspitaningrum;Arief Rahman Afief;Riat El Khair;Abdi Wira Septama
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.31.1-31.8
    • /
    • 2023
  • Multiple myeloma (MM) is a hematological malignancy. It is widely believed that genetic factors play a significant role in the development of MM, as investigated in numerous studies. However, the application of genomic information for clinical purposes, including diagnostic and prognostic biomarkers, remains largely confined to research. In this study, we utilized genetic information from the Genomic-Driven Clinical Implementation for Multiple Myeloma database, which is dedicated to clinical trial studies on MM. This genetic information was sourced from the genome-wide association studies catalog database. We prioritized genes with the potential to cause MM based on established annotations, as well as biological risk genes for MM, as potential drug target candidates. The DrugBank database was employed to identify drug candidates targeting these genes. Our research led to the discovery of 14 MM biological risk genes and the identification of 10 drugs that target three of these genes. Notably, only one of these 10 drugs, panobinostat, has been approved for use in MM. The two most promising genes, calcium signal-modulating cyclophilin ligand (CAMLG) and histone deacetylase 2 (HDAC2), were targeted by four drugs (cyclosporine, belinostat, vorinostat, and romidepsin), all of which have clinical evidence supporting their use in the treatment of MM. Interestingly, five of the 10 drugs have been approved for other indications than MM, but they may also be effective in treating MM. Therefore, this study aimed to clarify the genomic variants involved in the pathogenesis of MM and highlight the potential benefits of these genomic variants in drug discovery.